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ABSTRACT

Despite decades of research and development devoted to building systems for teaching
computer programming to young students, and for enabling a computer to automatically
create computer programs, we still face two fundamental challenges that have not yet been
met:

• The Educational Challenge (E): How can we teach computer programming to hu-
mans (particularly young ones) in such a way that these humans thereby acquire the
ability to solve complicated problems, not only in programming itself, but in other
domains calling for problem-solving power?

• The Technological Challenge (T): How can we ”teach” programming to computing
machines, so that they have the ability to write computer programs on their own?

The defense focuses primarily on results regarding E.
There have been many attempts and approaches pursued in the attempt to meet

these two challenges. In the case of such work aimed at meeting E, we can safely say that
the vast majority of this work has been based on constructivism. Constructivism, which
is in turn based on (what we call) naive Piagetian theory, holds that young students learn
best in bottom-up fashion, by constructing small, simple programs, and working gradually
toward deep understanding and deep problem-solving power, which they supposedly ob-
tain as they gradually progress. Cognitivism (at least of the elementary sort), on the other
hand, holds that human cognition is computation, where that computation is restricted
to relatively simple computationally mechanisms and routines; and that pedagogy should
teach students routines. This research has explored a framework beyond both construc-
tivism and cognitivism: formal meta-cognitivism+. Formal meta-cognitivism+ is based on
the belief that deep understanding at an abstract level completely independent of domain
is the key to problem-solving, but the abstractions in question are built out of those avail-
able in the science of computation. Programmatically, formal meta-cognitivism+ includes
the view that the best way to teach computer programming is to teach facility at this ab-
stract, logical level, and in turn teaching at that level means teaching formal logic, and the
parts of computer science that relates directly to formal logic. The + is included because
unlike cognitivism, our theoretical framework leaves open the possibility that computation
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beyond standard, Turing-level computation is needed for suitably accurate abstractions
and models.

Our main formal meta-cognitivist hypothesis is that dedicated training in abstract
formal reasoning will help students solve complicated computer programming problems.
An initial pilot study tended to support this hypothesis. To test the hypothesis further, we
investigated, in three experiments, a set of factors (e.g., ability, educational background,
logic training, programming experience) in order to gauge the impact of such factors on
skill in computer programming. The results support our main hypothesis, as is explained
and shown in the dissertation.
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1. INTRODUCTION

Since the invention of the first programmable computer in 1930s and the birth of cognitive
science in 1950s, there have been decades of research on theories and development of
systems to teach humans and computing machines to program. For our discussion, we
can distinguish programming into two types: what we term simple programming (SP or
“coding”) versus original programming (OP or “programming from scratch”). We can thus
speak about programmings versus programmingo. In simple programming, one receives
an explicit algorithms or pseudo-code as input, and produces code that when executed
computes the algorithm using a programming language. SP is usually made easy by the
following of a limited set of syntax and semantics of the programming language that sets
the context of the task. Original programming, where one receives only an abstract, formal
description of a function f in natural-language/formal-language content, and then must
create solutions that include algorithms, and then produce a working computer program
that computes the function, is clearly much more difficult. (We in fact point out in Chapter
4 that original programming may involve information-processing beyond the reach of a
Turing machine.) On the educational side, our primary interest is: How can we better
teach OP? OP is difficult for both people and computers, because our understanding of
the learning mechanisms for programming in this deep way is severely limited.

With the number and variety of contemporary computing devices in the world today,
and the explosion of Internet-based information systems reaching into almost every area
of people’s lives, the need for and the demand for computer programming has increased
dramatically, and the demand will likely continue to increase, with no end in sight. This
state-of-affairs gives rise to many challenges; in this study, we focus on two: an educational
challenge, and a technological challenge. The bulk of our effort is targeted at the first of
these two challenges.

The reader already knows, but it is important to affirm here nonetheless, that there
already is a science of computer programming, and, at least by some metrics, it is quite
mature. This science falls within computer science and overlaps significantly with logic
and mathematics; it specifically involves the sub-fields of theoretical computer science,
programming languages (or just ‘PL,’ the abbreviation used by those in the field), the
study of algorithms, computability and complexity theory, and so on. However, there
is no cognitive science of computer programming (= CSCP). At best, there are relevant

1
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but exceedingly slim pockets of work (the psychology of computer programming special
interest group, papers on the pedagogical effectiveness of Logo (which we shall canvass),
etc.). The aim of this dissertation is to help establish the cognitive science of computer
programming by systematically addressing the two challenges noted immediately above.
These challenges would need to be addressed by any mature version of of the cognitive sci-
ence of computer programming. It should be emphasized that this dissertation is intended
to be only a prolegomenon to a mature CSCP. It should also be admitted out that the list
of challenges from which the two addressed in this book are drawn would inevitably be a
very large one. For example, here are some of the questions that should be answered in
any mature CSCP:

• What are the basic mental operations in the processing of computer programming
and problem solving?

• What kinds of education, experiences and strategies improve programming skills?

• What factors influence successful problem-solving, not only in programming, but
beyond?

• How can we design better programming languages and environments?

• How can we build better automatic programming technology?

A truly mature CSCP would address all of these challenges, and more. The present
project’s final chapter, 6, includes in §6.3 a list of some of the culture-relevant challenges
that would be on any “master” list of challenges for CSCP.

We now briefly set the two aforementioned challenges that constitute the foci for
the dissertation.

1.1 Our Two Main Challenges
1.1.1 The Educational Challenge E

Given the foregoing, E is easy to state:

E How can we best bring about the cognitive skills that humans (particu-
larly young ones) need to acquire in order to effectively programo, where
the given input function f is non-trivial and perhaps even quite compli-
cated?
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1.1.2 The Technological Challenge T:

It is equally straightforward, given the discussion above, to state the second challenge
that motivates the search for a cognitive science of computer programming:

T How can we create the algorithms that computing machines can use to
programo, where the input functions are, again, non-trivial and perhaps
even quite complicated? And how can we build computing machines that
not only generate computer programs that compute functions given as in-
put, but also establish that the programs they produce are correct? That
is, how can we create self-verifying automatic-programming programs?

There have been attempts to meet both challenges. In the case of E, which, again,
is our main area of focus, there have been two two fundamentally different approaches
taken.

1.2 Approaches to the Educational Challenge E
A number of different approaches have been taken in the attempt to meet these

two challenges; but all this work has met with, at best, limited success. The approaches
taken to T (along with the lack of progress made) are discussed in Chapter 4. But we
provide here a quick, preview summary of the two main approaches taken to E. This pair
is: constructivism and cognitivism.

1.2.1 Constructivism

Constructivism, which has its roots in the great psychologist Piaget, holds that
young students learn best in bottom-up fashion, by constructing small, simple programs
naÄśvely, and working gradually toward deep understanding and deep problem-solving
power, which they supposedly obtain as they gradually progress through harder and harder
problems. Unfortunately, studies have shown that students exposed to educational pro-
gramming systems based directly on constructivism, such as Logo (Papert, 1980), did not
experience cognitive transfer as a result: they do not develop problem-solving skill that
can be applied in other domains (Kurland et al., 1987; Pea et al., 1987; Khasawneh, 2009),
nor do they acquire skills that persist in the domain of computer programming itself.

Constructivism is not unfairly called “learning by doing.” This approach holds
that humans generate knowledge and meaning from an interaction between their concrete
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attempts to build, and reaction to the results of these attempts. So, children in this ap-
proach supposedly best learn to programo by diving into examples, without first receiving
training about the formal essence of programs and their formal idealizations (e.g., Turing
machines), and without being given any background in even naive set and string theory
to aid in achieving a deep understanding of programs. Often approach C is accompanied
by a concerted effort to engage the student with entertaining elements (e.g., turtles and
other cute animals) that has rather little to do with the formal essence of a program or
the function that it computes.

1.2.2 Cognitivism

Cognitivism is distinguished by the view that human cognition is standard compu-
tation, and is associated with computational “architectures” of the mind, for example the
prominent cognitive architecture known as ‘ACT-R’ (Anderson & Lebiere, 2003). (For an
overview of computational cognitive modeling, see Sun (1999).) The teaching of computer
programming in the cognitivist paradigm has almost single-handedly been led by John
Anderson and colleagues (Anderson & Lebiere, 1998; Anderson, 1993; Anderson et al.,
1995), and has focused on learning relatively simple routines for producing code that im-
plements simple, given algorithms. An important part of the context for the research
reported on in the present dissertation, is that the use of computer systems (intelligent
tutoring systems, as they are called) to tutor humans in computer programming, based
as they have been on simple computational cognitive models, has been limited to simple
programming; that is, to programmings.1

1.2.3 Our Approach: Formal Meta-Cognitivism+
This research explores a framework beyond both constructivism and cognitivism:

formal meta-cognitivism+. Formal meta-cognitivism+ is based on the belief that deep un-
derstanding at an abstract level completely independent of domain is the key to problem-
solving, but the abstractions in question are built out of those available in the science
of computation. Programmatically, formal meta-cognitivism+ includes the view that the
best way to teach computer programming is to teach facility at this abstract, logical level,

1An intelligent tutoring system (ITS) is a computer system that provides immediate and customized
instruction or feedback to learners, usually without intervention from a human teacher. In the case of
cognitivism-based work based on ACT-R, which has completely dominated ITS in the area of computer
programming, all programming taught is decidedly of what we have called the s variety. An excellent, up-
to-date overview of ITSs is provided by Bourdeau & Mizoguchi (2010, chapter 8), who discuss “cognitive”
tutors based on ACT-R, confirms our diagnosis.
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and in turn teaching at that level means teaching formal logic, and the parts of computer
science that relate directly to formal logic (design and formal assessment of algorithms,
e.g.). The + is included because unlikecognitivism, our theoretical framework leaves open
the possibility that computation beyond standard, Turing-level computation is needed for
suitably accurate abstractions and models. This possibility is discussed in Chapter 4.

In formal meta-cognitivism+, the most efficacious learning is assumed to happen via
deliberative reasoning, applied to progressively more difficult problems, until the learner
reaches at least Stage IV in Piaget’s 1958 continuum for cognitive development. At Stage
IV and beyond the learner can reason at the level of full first-order logic (FOL), and can
generate and assess hypotheses expressed in FOL. Formal meta-cognitivism+ is based on
the idea that the best way to learn to programo is to gradually come to understand es-
sential, logico-mathematical, theoretical concepts, and on the idea that under the right
conditions some humans can indeed reach Stage IV and beyond (Rinella et al., 2001;
Bringsjord et al., 1998). Formal meta-cognitivism+ also suggests that programming lan-
guages and environments should themselves be reflective of formal logic; this topic is dealt
with in Chapter 5.

1.3 Hypotheses/Claims
1.3.1 Main Hypothesis H1 With Respect to E

Our main formal meta-cognitivist hypothesis, H1, is that dedicated training in ab-
stract formal reasoning will help students solve complicated computer programming prob-
lems. An initial pilot study tended to support this hypothesis, and served to catalyze the
present dissertation. To test the hypothesis further, we investigated, in three rather elab-
orate experiments, a set of factors (e.g., ability, educational background, logic training,
programming experience) in order to gauge the impact of such factors on skill in computer
programming. The results, as shall be seen in Chapter 2, support our main hypothesis.
In short, it certain indeed seems that training in formal logic as an abstract framework
for programming does facilitate programming skill. Therefore, such training helps to meet
the educational Challenge E. We believe, accordingly, that formal meta-cognitivism as a
pedagogical strategy and approach will allow us to meet E.
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1.4 Approaches to the Technological Challenge T
Engineering approaches to meeting the challenge T that are connected to straight

computation, without taking account of the kind of robust cognition that is posited as key
by formal meta-cognitivism+ (e.g., evolutionary machine-learning approaches), it seems
to us, will not allow us to solve T . But here we do not yet have empirical results that bear
out this position. Of course, it does seem quite reasonable that, on the other hand, if we
can understand the nature of the deep reasoning and creativity in exceptional individuals
who are adept at programmingo, which is what the kind of experiments reported on in
Chapter 2 can in principle disclose, we believe we can profitably apply this understanding
to the engineering of programs that meet challenge T. These matters are taken up in
Chapter 4.

1.5 Computers and Computer Programming
It is beyond the scope of this dissertation to provide self-contained exposition of

computers and computer programming, as they appear and have meaning in the modern
world. This is true of necessity, since this world, an increasingly digital one, includes an
ever-expanding (and rapidly, at that!) list of programming languages. In our experiments,
as we make clear in Chapter 2, we allowed subjects to use, in their answers, pretty much
any programming language they happened to be familiar and comfortable with — and
indeed we even permitted subjects to simply use pseudo-code or flow charts, in order to
allow them to describe algorithms in generic form. Accordingly, we do assume readers
to have at least a rudimentary, general understanding of both computers and computer
programs, in the form of some of some kind of generic, idealized hardware to play the role
of ‘computer,’ and of the concept of some programming language or algorithm-specification
language to play the role of ‘computer programs.’ Those few readers who are completely
ignorant of these concepts are encouraged to consult two excellent textbooks that together
provide everything needed, from the side of the logico-mathematics of computers and
computer programming, to fully assimilate and appreciate the present dissertation: Lewis
& Papadimitriou (1981) and Davis et al. (1994).
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2. EXPERIMENTS

2.1 Purpose
The purpose of the experiments that form the heart of this dissertation are two-

fold: One is to test the hypothesis that logic training increases the chance of successfully
solving programming problems, especially difficult ones. The second is to investigate what
educational and academic factors impact on the success of programming, in the hope of
gaining some insight into meeting the Educational Challenge E and the Technological
Challenge T.

2.1.1 Chief Hypothesis

Our chief hypothesis, recall, is:

H1 In line with Meta-Cognitivism in the programming domain: Training in
formal logic as an abstract framework for programming which facilitates
programming skill. Therefore, such training helps to meet the educational
Challenge E.

2.1.2 Other Factors

In addition to logic training, this study examined relationships between success
in solving computer programming problems with other potential factors; for example,
training and experience in programming languages (identified with number of dedicated
programming-languages courses taken by subjects), nature of the first programming lan-
guages to which subjects were exposed, and, to a degree, learning methods (e.g., whether
learning was by individual tutorials, or by online instruction, primarily self-study, etc.).

2.2 Methods
This research included three experiments, each with a different set of programming

problems, but with the same set of educational and academic-background questions.

2.2.1 Programming Problems

There were three sets of programming problems presented to three different group
of subjects. The first set of problems were composed of two language-oriented problems

7
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(Appendix A). The second set were composed of three questions related to digital-circuit
analysis (Appendix B); and the third set was made up of two target-defense problems
(see Appendix C). The variety of problems was felt to be an important measure to take
in order to reduce the possibility of bias created by subject familiarity with a particular
kind of programming challenge.

2.2.2 Background Questions and Variables

While, as noted, there were different programming problems for different projects,
all three experiments (except Experiment 1C, which had programming problems only)
shared the same set of background information questions. (Details see D ) As a result,
the experiments shared the same type of variables:

• Dependent Variable S: Successful outcome of problem solving.

• Education variables:

– E1: Had logic training, defined as taking one or more logic courses;

– E2: Number of logic courses;

– E3: Had Programming Language (PL) Courses; and

– E4: Number of PL Courses.

• Other Variables: Academic/Demographic Background

– V 1: Academic Major;

– V 2: SAT, and equivalent (ACT Scores);

– V 3: Gender; and

– V 4: Race/Ethnicity.

2.2.3 Procedure

Subjects first answered a set of questions related to their academic background,
logic education, and programming-language education and experiences. Then they were
given two to three programming problems. After attempting to solve the problems, they
answered a set of questions related to their perception of the difficulty of the problems
they had tackled.
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2.2.4 Test of Chief Hypothesis (H1) Using χ2 Statistics

To test the hypothesis that logic training improves the probability of solving difficult
programming problems, and to examine the relationship between programming-language
training, programming experience, learning style, and other education-background factors
with the outcome of programming problem solving, we employ χ2 test.

The χ2 test provides a method for testing if the relationship between categorical
variables differs significantly from chance, and which categories account for any differences
(e.g., see Pearson, 1900, 1904; Elderton, 1902; Fisher, 1922; Yates, 1934).

2.2.4.1 Data Analysis Methods: χ2 Test

Let us examine the relationship between two variables: A and B, where each has
multiple mutual exclusive levels of values

A = (A1, A2, ..., Am)
B = (B1, B2, ..., Bn)

.
Null Hypothesis H0: A and B are independent. That is, P(AB) = P(A)P(B).
Alternative Hypothesis H1: A and B are not independent.That is: knowing the value of A

can help to predict the value of B.

Pearson introduced χ2 statistics.

χ2 = ∑ (Observed − Expected)2
Expected

= ∑
j

∑
i

(FO(i, j) − FE (i, j))2
FE (i, j)

where FO(i, j)is the observed frequency count for A = Ai and B = Bj ; FE (i, j), the
expected frequency count for A = Ai and B = Bj .

Expected Frequency is the count of an event that happens if variables A and B are un-
related, while taking consideration of the observed results. Assume there are total
N independent samples; ni is the total number of sample observations when for
A = A(i). nj is the total number of B = Bj . Then the expected frequency of A = Ai

and B = Bj can be computed by

FE (i, j) = ni × nj

N
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Degrees of Freedom are related to the number of levels of variables.

k = (m − 1) × (n − 1)
p-value shows the possibility the observed sample data could occur by chance (i.e. null

hypothesis is true), associated with a given statistical distribution (e.g. χ2) and k

degrees of freedom.

Level of Significance (α) is associated with level of confidence and indicates the threshold
value of p-values. It indicates how extreme observed results must be to reject the
null hypothesis.

This study selects 95% level of confidence as the threshold α = 1 − .95 = .05. If
p ≤ α, we reject the null hypothesis. (The critical value corresponds to α = 0.05.)

Cramér’s V measures the strength of association between the two variables of interest. It
has values that range between 0 and 1.

V = √
χ2�N

min(m − 1, n − 1)
Where N is the number of observations, m is the number of columns, and n is the
number of rows. V is between 0 and 1, with 0 as no association between A and B,
and 1 as A = B. For a 2 × 2 contingency table, m = n = 2.

V = χ2
N

= φ

, which also called φ coefficient.

Residual in a contingency table is the difference between observed and expected values.

R (i, j) = FO(i, j) − FE (i, j)
Standard Residual indicates the importance of the cell to the overall χ2 , similar to

Z-score, showing standard deviations between observed and expected values.

RStd(i, j) = FO(i, j)FE (i, j)√
FE (i, j)
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Table 2.1: A sample of 2 × 2 contingency table

A1 A2 Total
B1 f (1, 1) f (1, 2) r1
B2 f (2, 1) f (2, 2) r2
Total c1 c2 N

Adjusted Residual adjusts the residual with overall sample size.

RAdj (i, j) = FO(i, j)FE (i, j)√
FE (i, j) × ni × nj

where ni and nj are the row and column total proportions, respectively.

2.2.4.2 Contingency Tables

A contingency table, also called cross tabulation or cross tab, was introduced by
Pearson in 1900, and represents a matrix which displays the frequency distribution of
the variables of interest (Pearson, 1900, 1904). For example, Table 2.1 is a simple 2 × 2
contingency table, with a sample size (e.g., number of observations) as N, for two levels
of attributes of two variables A(A1, A2) and B(B1, B2).

The data in the cells of the contingency table are frequencies or counts of the oc-
currence:

f (i, j) is the frequency (count) of event A = Aj and B = Bi. ri = f (i, 1) + f (i, 2), the
marginal total of row i, is the frequency of the event B = Bi. cj = f (1, j) + f (2, j), the
marginal total of column j , is the frequency of the event A = Aj .

Given the observed events fO(i, j), the expected values can be computed. In the
example in Table 2.1, the expected frequency of A = A1, and B = B1 can be computed by

fE (1, 1) = r1 × c1
N

where N is the total sample size N = r1 + r2 + c1 + c2.
The χ2 value of a cell is as follows:

χ2 = (FO − FE )2
FE
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The Xi2 test statistic is computed by

X 2 = ∑ (FO − FE )2
FE

Then the Null Hypothesis (H0) states that Aand B are independent: Knowing the value
of A does not help predict the outcome of B.

The Alternative Hypothesis (H1): A and B are associated: Knowing the value of A

can help to predict the outcome of B.

2.2.4.3 χ2 Test Assumptions

There are certain restrictions for using χ2 test of hypotheses. The main assumptions
are given below; experiments in this study satisfy them. Thus, most of our data analysis
will employ this method.

• Variables should be ordinal/nominal level.

• Variables should consist of two or more categorical, independent levels. All levels of
a variable are mutual exclusive.

• In a contingency table, 80% of cells’ values of expected counts should be at least
5. Otherwise there are other tests of significance, such as Fisher’s exact test and
maximum likelihood test (McHugh, 2013).

2.3 Experiment 1: Language Problems
Experiment 1 is to test the feasibility of the study. To determine if our selection

of programming problems are in the right range, in that most of the people will have
difficulty solving them, but at the same time not too difficult for people to solve them in
a reasonable amount of time. We also wished to determine if our experimental questions
and programming problems would be better done online or on-site.

2.3.1 Programming Challenges

Description
Two programming problems are given below, and involve working with a very simple

language, L, a fragment of English. The words used in L are:

{Bill, Jane, likes, chases,makes, a, the,man,woman, cat, happy, thin, quickly}
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Bill, Jane, man, woman, and cat, are nouns; happy and thin are adjectives; likes, chases, andmakes are verbs; a and the are determiners; and quickly is an adverb.
The following grammar defines the sentences of L.

S ::= Noun Verb Noun R1

| Det Noun Verb Noun R2

| Det Adj∗ Noun Verb Det Adj∗ Noun R3

| Det Adj∗ Noun Adv Verb Det Adj∗ Noun R4

| Det Adj∗ Noun Verb Det Adj* Noun Adv R5

where Noun stands for any noun, Verb stands for any verb, Det stands for any deter-
miner, Adv stands for any adverb, Adj stands for any adjective, Adj∗ stands for zero,
one, or more adjectives, and S stands for a well-formed sentence of L.

For instance, the sequence 〈the, thin, cat,makes, a,Bill〉 is a sentence of L, becausecat and Bill are nouns, likes is a verb, the and a are determiners, and thin is an adjective;
so the sequence has the form Det Adv∗ Noun Verb Det Adj∗ Noun, which, by rule
R3, is a sentence of L. (Notice that the first Adj∗ is matched with the one adjective thin,
while the second Adj∗ is matched with the lack of adjectives between a and Bill.)

In each of the two problems you will be asked to write a program. You may use
one of the following programming languages: BASIC; C; C++; Java; Lisp; Pascal; or you
may use pseudo-code to describe your program in detail. Please indicate whether you
are using pseudo-code or a programming language to solve the problem, and, if using a
programming language, which programming language you are using.

Problem 1
Write a program P that takes as input a (finite) sequence of words used in L and

outputs yes if the sequence is a sentence of L, and outputs no otherwise. For example, given
the sequence 〈Bill, likes, Jane〉, P should output yes because the sequence is a sentence,
according to R1. When given 〈Bill, Jane, likes〉, P should output no, because this sequence
is not a sentence of L.

Problem 2
Write a program P that takes as input a (finite) sequence of words used in L and

outputs yes if the sequences is a palindrome sentence of L, and outputs no otherwise. A
palindrome sentence is a sentence which reads the same in both directions. For example,
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Table 2.2: Grading scale. Succeeded: Scores ≥ 4; Failed: Score ≤ 3
Score Success Description

5 1 A complete, correct and clear program/algorithm.
4 1 A complete, mostly correct algorithm/program.
3 0 An incomplete program, with some correct steps in the right direction.
2 0 A few basic steps, but incomplete/unclear.
1 0 Wrote little or some unrelated notes.
0 0 Blank

given the sequence 〈Bill, likes,Bill〉, P should output yes, since the sequence is a palin-
drome sentence. When given 〈the, cat, likes, Jane〉, P should output no, since the sequence,
although a sentence, is not a palindrome sentence.

2.3.2 Experiment 1A: Online

2.3.2.1 Subjects

Subjects were college students who answered a post on Experimetrix, an online
experiment scheduling tool used at Rensselaer.2 Most of these subjects were taking an
introductory course, such as statistical methods, in Rensselaer’s Department of Cognitive
Science. Full IRB approval was obtained for these and all other subjects used in the
experiments.

2.3.2.2 Procedure

Experiment 1A was conducted online, via an online survey platform called Opinio,3

where subjects signed in at their own time and place (ObjectPlanet, 2014). The sub-
jects first answered a set of background questions, then they were presented with two
programming problems.

Subjects initially answered a set of questions related to their demographics and
academic background, such as major, undergraduate grade point average (GPA), logic
education, programming-language education and experiences. Then they were presented
with two challenging programming problems. Subjects were permitted to answer them
directly in the text box below each question, or to copy/paste from another editor. After
that, they were asked to rate the problems for perceived difficulty. At any time, the subject
can restart from the beginning, and/or move back to a prior screen. But they needed to
answer all required questions in order to move forward on a screen.

2Experimetrix (2006) http://www.experimetrix.com/index.htm (Date Last Accessed October 10, 2014).
3Opinio (2014) http://www.objectplanet.com/opinio/ (Date Last Accessed October 10, 2014).
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2.3.2.3 Results

There were 183 subjects who took part in the online Experiment 1A. Of the 183,
171 of them were valid. One of the background questions asked subjects to check a specific
selection. If they selected anything else, their results were considered invalid, because most
likely those subjects were not paying attention to what they read. All of the experiments
included this test question, and the data analysis included only those with valid answers.

The rate of success were low: 13 out of 171 subjects, 7.6% succeeded in solving
Problem 1 (P1); while 92% failed. 9 out of 171, 5.3% of subjects solved Problem 2 (P2).
Overall, there only 4.1% of subjects succeeded in solving both problems.

Although it is easy to get a large number of subjects online, with the flexibility
of time and location, the quality of effort among such subjects looked low. Hence, in
Experiment 1B, subjects were in a classroom and answered questions and attempted the
programming problems on paper.

2.3.3 Experiment 1B: On-Site

Experiment 1B used the same programming problems as those in Experiment 1A,
but the experiment was conducted on-site in a classroom setting.

2.3.3.1 Subjects

Subjects were 18 volunteers signed up by the same method/system: Experimetrix.
The same sample pool was here as Experiment 1A, but different individuals.

2.3.3.2 Procedure

After sign up, subjects came to campus in a classroom, answered background ques-
tions, and solved the problems on paper.

2.3.3.3 Results

We used the same grading scale as in Experiment 1A. This time the attempted
(those who scored 2 and over) rates were much higher. All 18 records were valid. All
100% attempted to solve problem 1, and 17 out of 18 (94%) subjects attempted to solve
Problem 2. 88.9% had scores 2 or higher. The success rate were higher than those in
Experiment 1A. Eight of out 10, 44% solved Problem 1. But still there were only two out
18, 11.1% who solved Problem 2.
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Comparing Experiments 1A and 1B, for subjects who solved both problems, using
a χ2 test contingency table of success rate in online group and on-site group, we report
that the on-site group performed slightly better, but the differences were not statistically
significant: p = .184 > 0.05(α).

Subjects put much more effort into solving the problems in an on-site setting than
online, located remotely. The on-site generated a higher attempted rate, that is a higher
rate of subjects attempted to solve the problems, instead of just by-passing them quickly
as in the online case. The differences were significant (p < 0.05).

Several reasons could explain why there was no difference in success rate between
the two settings. One is that survey mode does not play a role in a subject’s success in
problem-solving (of this and similar type). Some other factors need to be considered: The
lack of a relationship between logic training and performance could indicate that there are
too few people who had logic training. Out of the 189 subjects included in Experiments
1A and 1B, only nine subjects had logic training. Sample size was too small to warrant a
conclusion.

On-site students expended much more effort than those online. But the general
performance on the programming problems was not significantly different from those in
Experiment 1A. One of the possible reasons for this: The randomly signed up subjects were
mostly students who were taking an entry-level psychology class, so many may have lacked
either logic or programming-language training, or both. To examine this, Experiment 1C
was piloted.

2.3.4 Experiment 1C: With Logic Training

2.3.4.1 Subjects

Subjects were students who were taking a logic class, and volunteered to attempt
to solve the same two challenge problems.

2.3.4.2 Procedure

For a group of students who were taking an introductory logic course near the end
of the term, we presented them with the same two problems as in Experiments 1A and
1B. At their choice, they were asked to solve the two programming problems, and small
monetary awards were given to those who solved the problems correctly. No background
questions were asked.
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subjects who had facility with language. Experiment 2 presented subjects with mostly
graphic logic gates and digital-circuits diagram problems (for details, see Appendix B).

2.4.3 Results

The rate of success was relatively high, 11 out of 13; 84.6% solved Problem 1. Four
out of 13, 30.8%, solved Problem 2, and three out of 13, about 23.1%, solved Problem 3.

But many subjects reported difficulty in understanding some of the questions be-
cause some of the descriptions were long and the circuit concepts were difficult to follow
for students without an electrical-engineering background.

Further, both Experiment 1 and 2 had only two questions, so the success in Exper-
iment 2 was be defined as subjects who solved at least two questions, at the combined
data sets analysis below.

Since all subjects in Experiment 2 had taken a logic class, it is not meaningful to
see if logic training played any role in the success rate using data from this experiment
alone. These data increased the number of subjects with logic training, as well as other
types of background information. Further analysis of these data in combination with data
from the other experiments will be included in an overall data-analysis section following
discussion of Experiment 3.

2.5 Experiment 3: Target Defense Problems
The relatively low problem success rate could be due to the fact that most of the

relevant subjects did not have proper computer-programming training. The intent of
Experiment 3 was to obtain a large sample of subjects with computer-language training
and present them with programming problems that do not require the reading of a lengthy
description or require prior knowledge of language forms or circuits.

2.5.1 Subjects

Experiment 2 had a limited sample size and all subjects had logic training. Ex-
periment 3’s subjects were from volunteers who had taken either of two advanced com-
puter courses (Modeling and Algorithms) in Rensselaer’s Department of Computer Sci-
ence, which of course increased the chances of those who had computer-programming
training and experience. Furthermore, these data will be combined with data sets from
different groups of subjects.
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2.5.2 Programming Challenges

Experiment 3 presented two problems from a computer textbook (Kleinberg & Tar-
dos, 2005). These problems did not require prior knowledge of standard language forms,
digital-circuits terms, or the need to read a long description to understand the concepts
(details are found in Appendix B).

2.5.3 Results

There were 77 valid subject records. 35.1% succeeded in solving Problem 1, 18.2%
solved Problem 2, and 12% were successful in solving both of the problems. Further results
and discussions will be presented in the next section.

2.6 Comprehensive Data Analysis of Combined Experimental Results
The results presented below were from data in all three experiments except a portion

of the records from Experiment 1C, in which — as noted above — the subjects did
not answer background questions. The total number of valid records were 279 different
subjects.

2.6.1 Success and Educational Factors

We first examine four educational variables, each with a derived variable:

• E1: Had logic training, as defined as taking one or more logic courses (E1′);

• E2: Number of logic courses (E2′);

• E3: Had Programming Language (PL) Courses (E3′); and

• E4: Number of PL Courses (E4′).

where E1, E2, E3 and E4 were direct input from subjects; and E1′ and E3′ were derived
from subject’s list of course names, combined with published course descriptions. E2′,
number of logic courses, and E4′, number of PL courses, were derived from values of E1′

and E3′. Although many of the derived and self-reported variables were the same, for
some records the derived values were different from the self-reported. For example, some
subjects listed “Database Systems” as one of the PL courses, when PL was not part of
the course curriculum.
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2.7.2 Limitations and Future Work

These results are encouraging and promising, but not conclusive. A χ2 test can
provide evidence for association or independence between variables, but, as is well-known,
it does not prove causal relationships. Ideally, one could assign weights to each variable
representing the contributions of that variable to the success, but unfortunately this is
impossible because the variables used in the study are not orthogonal, and the relationships
may not be linear. Although initial logistic-regression analysis results did not show a clear
pattern, further study of possible relationships could be interesting and useful.

In the future, we can study the types of individuals who performed well and develop
ways to record and observe their problem-solving processes. Along with their educational
background, we should try to determine what specific methods or strategies they used
during the problem-solving process, such as whether they used diagrams, or top down
vs. bottom up mental strategies, or similar cognitive techniques to improve their success
in solving difficult problems. This could possibly provide insight into machine learning
of automatic programming. As a matter of fact, a surprising number of those subjects
who met with success did make use of visual of diagrammatic constructions, and we do
speculate about this promising direction for investigation in Chapter 4.
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3. ASSESSMENT OF EDUCATIONAL PROGRAMMING ENVIRONMENTS

3.1 History and Overview of Educational Programming Languages and Environ-
ments
Programming languages are of course often used to accomplish meaningful things

in the “real world.” For example, NASA produces many programs in order to make its
projects possible: The much-discussed future mission to Mars, for example, will be possible
only if many sophisticated computer programs work their magic. However, a programming
language can be designed strictly for, or at least primarily for, educational purposes. And
this is the kind of programming language that relates to the educational challenge, E,
we are aiming to solve. Indeed, in Chapter 5, we describe the first version of our own
invention in this space. But before getting to that, it is important to take stock of prior
work in this space; hence the present chapter.

Starting with low-level programming languages, there have been numerous edu-
cational programming languages, usually only simplified instruction codes, designed to
enable programmers to learn the basic architectures of processors and main functions of
programming. One such example is Little Computer 3 (LC-3), an assembler-like lan-
guage developed by Patt & Patel (2004). For high-level programming languages, Logo,
modeled after Lisp, is by far the dominant representative of educational programming
languages/environments. Because Logo’s influence is, frankly, towering, and many other
educational programming languages and environments are clearly derivative of Logic, and
because Logo is deeply and directly rooted in constructivism, we will examine Logo in
detail in the present chapter.

3.1.1 Logo

3.1.1.1 What is Logo?

Logo is an educational programming language, based on “constructive” pedagogy,
intended to have “low threshold and no ceiling” (Papert, 1980). It was designed and
implemented by Bobrow, Feurzeig, and Papert at MIT in late 1960s. It was intended to
have a “low threshold” that would allow rank beginners and young children to learn to
program (in our nomenclature, to programs) quickly. Since Logo was designed to align
with constructivism, Logo was intended to serve as a standalone center in classrooms

28
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for learning not only programming, but thinking skills in a broader sense. As of course
a Turing-complete programming language, Logo, at least theoretically, enables expert
programmers to use it to solve even complex programs.

Logo programming centers around giving commands to a turtle. Children began
their programming learning experience by instructing the turtle to execute a sets of com-
mand, such as SQUARE or TRIANGLE, to draw different shapes. Then new commands
can be based on the defined set of commands, and the process iterates.

There were three primary goals for Logo: Lisp-like manipulation for syntactic sim-
plicity, dynamic creation, and easy debugging (Feurzeig, 2010).

Through the years, there have different variations of the Logo implementation on
different platforms and in various dialects. But the original setup was based on working
with a turtle robot on the floor, and then later turtle graphics on a monitor display.

3.1.1.2 The Dream of Logo’s Educational Power

Originally, Papert (1980) envisioned that “the child programs the computer and, in
doing so, both acquires a sense of mastery over a piece of the most modern and powerful
technology and establishes an intimate contact with some of the deepest ideas from science,
from mathematics, and from the art of intellectual model building.” In this book, Papert
pointed out two major themes: viz., with Logo, even children can learn to use computers
in a “masterful” way; and learning to use computers can change the way children learn
everything.

3.1.2 A Brief Assessment of Logo

Since we aspire to provide the world with technology designed on the basis of our
theoretical foundation (meta-cognitivism+, of course), technology intended to enable stu-
dents to learn to programo, and to give students a very deep understanding of the nature of
programming and problem-solving (we explain the steps toward such a system in Chapter
5), it is incumbent upon us to provide an assessment of Logo. In briefer and more direct
words: Is Logo already doing what our prospective technology would be intended to do?

The correct answer appears to be a negative one. For although there is some evidence
that learning Logo improves problem-solving and thinking skills (Solomon & Papert, 1976;
Papert, 1980), the majority of researchers outside the Logo/constructionism camp have
found precious little to be cheered by.
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For example, Pea and colleagues systematically studied Logo’s impact on children’s
programming skill and understanding of programming concepts, such as recursion; and
they studied whether Logo programming developed planning skill beyond programming
(Pea et al., 1987). The results, unfortunately, were negative. In their study of Logo’s
impact on cognitive planning skill, they compared two classes of 25 children/students who
had one school year of extensive programming in Logo, with another group that had no
programming. Quite remarkably, the performance of between two groups of students was
not significantly different (Kurland et al., 1987; Pea et al., 1987).

In addition, Vaikakul (2005), one of Papert’s students, conducted a study for the
Maine Learning Technology Initiative (MLTI), and was found that Logo (as well as self-
directed learning) did not fulfill the dream of Logo’s educational power. Between 2002
and 2003, Maine’s public education systems provided over 30,000 laptops (Apple iBooks)
to 7–8th-grade grades students. The intention was that with one computer for every
child/student, and the abundant and rich opportunities for self-directed work that would
flow from that, students would use their machines as a tool to teach themselves problem-
solving and critical thinking, among other skills. Some teachers went to LOGO workshops,
and in turn provided LOGO workshops to their students, in their classrooms, or after
school to willing kids. But after a while, many teachers as well as students lost interest.
Teachers thought LOGO was too hard and had nothing like the math that they felt needed
to be taught. Students, on the other hand, didn’t find it sufficiently interesting. One year
later, most of the teachers and students were using the computer the same way: mostly to
access information in websites, create slides, etc.; not to pursue the original goals of the
Logo camp: to explore mathematics, learn programming, and problem-solve. Interviews
with students and teachers disclosed that neither group felt Logo made a connection to
the math they were supposed to master.

In one of the studies from Khasawneh (2009), dedicated to examining the impact
of Logo programming performance and school mathematics achievement, the results were
rather disturbing: For instance, for a sample of 228 7th-grade students, all studied Logo
programming languages though turtle geometry. After a credit semester, their Logo pro-
gramming and mathematical tests were analyzed. The resulting correlation between Logo
programming scores and their mathematical scores were very low, in fact near zero (0.053).
This indicates that student mathematical performance and Logo-programming perfor-
mance require different skills. For the perspective of our approach, which seeks to teach
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programming as deep logico-mathematical thinking, this is unsavory.

3.1.3 Logo’s Relatives

Logo has inspired and influenced myriad other systems: NetLogo, StarLogo, KTur-
tle, REBOL, Etoys, Scratch, etc. Still firmly in keeping with constructivism, these systems
generally provide a graphical environment for children to learn by discovery themselves.
During the last 20 years, different variations were being used and integrated with 130
different implementations of Logo, each of which has its own strength. Many of these
implementations concern teaching and learning geometry as an important branch of math-
ematics (Khasawneh, 2009). One wonders whether students are really in any way learning
the underlying formal structures of geometry.

3.1.3.1 StarLogo, LEGOsheets, Lego Mindstorms

Logo-based and Logo-inspired systems, all based on constructivism’s mantra that
learning by building is efficacious, are numerous. For example, StarLogo, also developed
in MIT, is an extension of the Logo programming language. NetLogo, designed by Uri
Wilensky at Northwestern University, is in turn Java-based, but still very much a Logo-like
programming language and integrated modeling environment. PythonTurtle and Pynguin
are two Logo-like turtle-graphics environments created on top of Python.

LEGOsheets, based on AgentSheets created by researchers at the University of Col-
orado in 1994, is a rule-based programming language and visual aid for programming in
Lego Mindstorms. Lego Mindstorms includes a programmable brick (in so-called Brick
Logo) computer that controls the system, a set of modular sensors and motors, and Lego
parts from the Technics line to create the mechanical systems.

3.1.4 Recent Applications in the Same Vein

There are recent drop-and-drag, game-like applications in the same constructivist
vein. For instance, there is Squeak, Scratch, and Snap. Squeak is an implementation of the
Smalltalk programming language, which is an object-oriented, dynamically typed, reflec-
tive programming language. Scratch, in turn based on Squeak, is a visual, event-driven,
and imperative educational programming language that was designed by Resnick et al.
(2009). Heavily influenced by Logo, it too allows for turtle graphics; here the turtle moves
“sprites” and changes angles, and the programming is event-driven. Resnick et al. (2009)
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has explicitly affirmed three core design principles: “more tinkerable,” “more meaning-
ful,” and “more social.” Snap, deeply influenced by Scratch, is yet another educational
programming language, designed and developed by Harvey & Mönig (2013).

3.1.4.1 Alice Projects

Another educational programming language/environment, Alice, lets students set
up a narrative scene and create a simple animation — with minimal teacher facilitation,
and using 3D objects and yet another drag-and-drop interface intended to be engaging
and a very “supportive” coding environment. Alice was developed specifically to address
collaborative programming (Al-Tahat, 2014). Jain et al. (2011) also devised a tool to learn
programming languages and algorithms based on collaboration among young coders.

3.2 Conclusion
So, there are many, many systems in the educational-programming space. We have

looked far and wide,for hard empirical evidence that any of them exceed the effectiveness
of Logo (which, as we have reported above, is by any metric distressingly low), and have
found no such thing, alas. We point out, finally, that absolutely none of the educational
environments in the young-student space have been built in accordance with the logic-
based paradigm of computer programming, in which programs are proofs (see §5.4.2).
From the perspective of our theoretical basis, formal meta-cognitivism+, it comes as no
surprise that the educational programming systems of the present and past have severely
limited pedagogical reach. Our explanation is directly in line with the overarching moral
of Chapter 2, and the vindication therefrom of our chief hypothesis that the essence of
excellence in computer programming is deep understanding of the formal, deep formal-
logic terrain that underlies what programming is.
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4. COGNITION AND AUTOMATIC PROGRAMMING

It seems reasonable to hold that in order to find out how humans manage to write impres-
sive computer programs one should attempt to build systems that autonomously write
programs. This attempt is known as automatic programming (AP, for short). Unfortu-
nately, automatic programming, to this point at least, has ignored the human cognition
associated with computer programs, in favor of two engineering approaches (evolving com-
puter programs, and a particular logic-based approach). Neither of these approaches is
based on study of, let alone the attempt to mechanically simulate or replicate, human
computer programming. We now give a summary review and assessment of automatic
programming.

4.1 Overview & Assessment of Automatic Programming
In brutal simplicity, automatic programming (AP) is the field devoted to creating

computer programs smart enough to write significant computer programs, from — as
we’ve of course said elsewhere — scratch. A visual overview of this challenge is provided
in Figure 4.1. By and large, AP has not exactly made impressive strides over the last
three decades.4

The aims of AP have fluctuated considerably over the decades; this has been pointed
out by Rich & Waters (1988) and others. In the 1950s, the mechanical compilation of
Fortran programs into machine code was actually considered “automatic programming.”
But in the 1960s, at the dawn of AI (officially 1956, at the famous Dartmouth conference),
and in keeping with the rather ambitious dreams of this new and exciting discipline, a
much more lofty goal was set for the field — the black-box version of AP pictured in
our Figure 4.1, wherein only a non-implemented description of the desired relationship
between input and output is provided to the program-generating software, and the latter
then emits a ready-to-be-implemented, executable computer program that realizes the

Portions of this chapter previously appeared as: Bringsjord, S., Li, J.,Govindarajulu, S.N. and Ark-
oudas, K. (2012). On the Cognitive Science of Computer Programming in the Service of Two Historic Chal-
lenges. In De Mol L. & Primiero, G. (Eds.), Proceedings from AISB/IACAP World Congress 2012:Sympo-
sium on the History and Philosophy of Programming (pp. 17–23). Birmingham, UK: The Society for the
Study of Artificial Intelligence and Simulation of Behaviour.

4The ‘from scratch’ phrase is the rub. Great progress has been made in the semi-automatic realm,
where code is e.g. generated from libraries of pre-existing syntax, and from pre-engineered algorithms that
generate code from mechanical, predictable triggers.
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given specification. In short, in goes something well short of a computer program or even
a precise algorithm; but out comes a program ready to be executed.

There are several options available in the above framework. First, there are many
choices concerning the medium in which the description can be expressed; for example:

1. Natural Language: Ideally, we would be able to just tell the machine in a so-called natural
language like English what we want the program to accomplish. At least today, this is
not practicable. One could of course restrict the input language to, say, a controlled, rigid
fragment of English (or for that matter so other natural language, e.g. Chinese), but such
subsets are in fact formally defined in the first place, and hence we would be “spoon feeding”
the machine, and avoiding the fundamental challenge of AP.

2. Formal Specification: The input description could be expressed in a rigid, declarative formal
language, such those that accompany a formal logic, for instance first- or second-order logic.

3. Input-Output examples: The “description” could be illustrated by way of sample input/out-
put pairs. This would approach would be necessarily incomplete, as there will always be
infinitely many programs that cover any presented finite set of examples.5

4. Hybrid representations: Here, there is mixture of the above, and also a reliance on diagram-
matic or visual representations. (This option is relevant to what we discuss in §4.3.)

Most of the work on AP so far has been based on adoption of the second and
third of these options. Typically, inductive techniques build programs from input-output
examples; deductive techniques, on the other hand, typically construct programs from
formal descriptions.

The following represent three of the most prominent lines of research pursued in the
inductive thrust of AP:

1. Recurrence Detection. The seminal work in this area was carried out by Summers
(1977). Importantly from the standpoint of cognitive science, this work is certainly
among the most psychologically plausible lines taken in the field. Summer’s ideas
have been extended, most notably in the 1980s, by Kodratoff et al. (1989) and
Wysotzki (1986); they augmented the basic scheme we have delineated above. Simi-
lar techniques have been used in “programming-by-demonstration” systems, such as
the one provided by Tinker (Lieberman, 1993). Kitzelmann et al. (2006) and oth-
ers are sustaining this line of investigation, but results so far have been somewhat
meager.

5Theorems to this effect are provided in Jain et al. (1999).
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2. Genetic Programming. Genetic programming (GP) (Koza, 1992), the core idea of
which is to evolve programs via algorithms that parallel mutation and natural selec-
tion seen in the biological realm, was invented in the 1980s (although the core concept
behid evolutionary algorithms goes back to the 1950s). The basic algorithm-sketch
underlying GP is as follows:

(a) Initiate processing with a collection of random computer programs. Typically
programs are purely functional in nature, often expressed in exclusively func-
tional LISP, and represented as ASTs (abstract syntax trees).6

(b) Now, parelleling the biological realm, assign a fitness value to each of the pro-
grams in 1.

(c) Next, create a new collection, by performing “genetic operations” on selected
programs in the original collection. Typical operations are crossover and mu-
tation.

The 1.–3. loop is continued until some program in the current collection reaches an
acceptable level of finess, or until a maximum number of runs have been reached.

The most common genetic operations are specifically these:

• Mutation (performed on a single program): Randomly modify part of a pro-
gram’s structure.

• Crossover (performed on a pair of programs): Randomly modify two parts of
the two programs.

• Reproduction (done on a single program): Move a program that has not been
changed into the new collection.

Crossover is probably the most important of these three operations, and is the op-
eration performed most often.

GP is generally well-suited for optimization and control problems, and for games.
Unfortunately, it appears to be prohibitively expensive, computationally. Evaluat-
ing the fitness of programs entails evaluating the programs themselves, and that is
extremely time-consuming. ADATE (Olsson, 1998), for instance, one of the most

6Excellent coverage of a purely functional version/approach in Common Lisp is provided in Shapiro
(1992).
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prominent automatic-programming systems based based on genetic programming,
requires a complete six-and-a-half days to evolve a program for simply computing
the intersection of two lists of object. Like the other approaches to AP, GP has not
scaled up to realistic programs. Not only that, but in contrast to inductive logic
programming (briefly discussed below), GP offers human overseers and engineers no
explanation. Usually, the generated programs are ridiculously convoluted — code
that even novice programmers would not lapse into creating. Therefore, GP ver-
sions of AP, from the standpoint of cognitive science, are the least plausible of all
well-known lines of attack on the automatic programming challenge.

3. Inductive Logic Programming. Inductive logic programming (ILP) (Muggleton, 1992)
takes as input logic programs (not functional programs like those written e.g. in pure
Lisp). The process of combinging this input makes use of these elements:

(a) A background collection of formulae, B;

(b) a collection of positive examples E+ (almost always simple formulae in first-
order logic); and

(c) a set of negative examples.

In this approach, he following are legislated as necessary conditions:7

(a) ∀ e− ∈ E− . B &' e−

(b) ¬ ∀ e+ ∈ E+ . B ' e+
The output is then an hypothesis h such that:

(a) ∀ e+ ∈ E+ . B ∧ h ' e+
(b) ∀ e− ∈ E− . B ∧ h &' e−

Of course, the conjunction of all the positive examples constitutes a trivial solution
to these equations. But what practitioners of the inductive logic programming (ILP)
line are seeking is predictive power: they want h to perform well on brand-new data
never seen by the system before.

7Following standard notation, we write Φ ' φ to indicate that the collection of formulae Φ logically
entails the formula φ.
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The core algorithm-sketch underlying ILP is this: start with a very specific h, and
gradually generalize it; or, alternatively, start with a very general h and gradually
make it more specific.

Many successful ILP systems treat induction as the inverse of deduction; accordingly,
such systems create hypotheses by “flipping” or reversing standard inference rules
seen in proof theories. For instance, here is the inference rule known as absorption:

A ⇒q A,B ⇒p
[Absorption]

A ⇒q B, q ⇒p

The conclusion in this rule must logically entail the input premises (see note 7).

While ILP has been somewhat successful in data mining, and no doubt has a bright
future elsewhere, in automatic programming the results have been underwhelming.
In ILP-based work, like work based in competing paradigms, no computer programs
beyond the usual simple examples that novice programmers quickly reach when for
instance learning Logo have been have been generated. In addition, the generated
programs are usually inelegant and inefficient.

What about purely deductive approaches, instead of approaches, like ILP, that
essentially reverse deduction? In a deductive approach to AP, the input is in the form
of a detailed, declarative description of the general connection between input and output
(recall Figure 4.1). This description is typically couched in terms of formulae in the formal
languages associated with first-order logic, or other higher-order descendants. The output
is of course a computer program, in keeping with the nature of the AP challenge. Once
again, popular types of computer programs here include purely functional versions of Lisp.
The output is accompanied by “guarantees” that the code does behave as desired; these
guarantees are step-by-step proofs.

Much of the work in the purely deductive approach has been carried out in the
context of formal logic. The basic idea is that the desired computer program is extracted
from a proof that asserts the existence of a suitable output (i.e. an output that meets
the specification mentioned above). The main idea is straightforward: Given the formal
specification and a background theory, both mentioned above, which together rigorously
describe the relevant domain (e.g., some class of data structures or algorithms), an attempt
is made to create a proof that the desired function satisfies the input specification.
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It is probably worthwhile to be more rigorous, especially in the context of the overall
cognitive-science approach (meta-cognitivism+) advocated in the present work. So, let S

represent the given specification:

∀ x : I, y : O . S(x, y) (4.1)

where x and y are variables ranging over the input and output domains; that is, over, re-
spectively, I and O. We do not require the specification to satisfy the traditional definition
of a function: For any given input x, there may be zero, one, or multiple outputs y that
stand in the desired relation to input x. Often the specification S(x, y) is of this form:

Pre(x) ⇒Post(x, y), (4.2)

This form aasserts that if the input x accords with given preconditions (symbolized by
‘Pre’), the output y is related to x in accordwith some relevant postcondition (‘Post’).

The goal is of course to generate a Turing-computable definition of a function map-
ping from I to O, such that the aforementioned specification S is true of the input-output
pairs. Put symbolically, the sought-for goal is this:

f : I → O

, where the following formula holds.

∀ x : I . S(x, f (x)). (4.3)

Specifically, when our specification S has exactly the syntax of (4.2), the desired goal can
be equivalently stated like this:

∀ x : I . Pre(x) ⇒Post(x, f (x)). (4.4)

Unfortunately, it must be conceded even by fans of logic in the computer-programming
space that certain disadvantages plague the purely deductive approach. For example, here
are two:

• The purely deductive approach requires the relevant engineers/scientists to produce
a formal specification of the relationship between the inputs and desired outputs;
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given the equations set out above, this is patently clear, and quite unavoidable. The
problem here is that creating such specifications can often be just as challenging as
creating a program that computes the targeted function.

• The approach in question hinges on the power of automated theorem proving. But
this field is itself an extremely challenging one, and while certainly much progress
has been made and continues to be made Bringsjord (2008b), the power of auto-
mated theorem provers is still far shy of the level of power needed for the automated
generation of substantive computer programs (i.e., programs routinely produced by
human programmerso) in the deductive manner we have described.

Despite these drawbacks, and in keeping with the approach to educational program-
ming environments we advocate (Chapter 5), we believe that the purely deductive route
will make significant headway against the AP challenge, as long as the burden on the
machine for automated theorem proving is partly lifted by a human contribution in the
crafting of proofs. Of course, by definition of the AP challenge itself, what the human
supplies cannot require great ingenuity and insight. We believe that a framework in which
the machine contributes the lion’s share, but the human supplies some guidance, is an ac-
curate reflection of how accomplished human programmers produce substantive programs.
The empirical work, and associated results, set out in Chapter 2, does in fact generally
support this human-machine symbiosis view, but we readily admit that much additional
empirical work on our part is necessary to test our suspicion, let alone concretize it in a
working AP system. At any rate, in order for challenge T to be met, some strong contri-
bution from deduction must be made, since the only way, by definition, to prove that some
AP-generated code does in fact compute the function it is supposed to is to use formal
logic — and ultimately to use proof-checking technology (Arkoudas & Bringsjord, 2007,
discussed in).

4.2 On Cognitive Science, Hypercomputation, and Automatic Programming
As noted earlier in the dissertation, cognitive science, from its sudden and revolutionary
arrival on the behaviorism-dominated scene, has always proceeded under the assump-
tion that human cognition is fundamentally computation (von Eckardt, 1995; Lepore &
Pylyshyn, 1999). This is the assumption that is aligned with what we have called cog-
nitivism. In this brief section, we point out that in light of the nature of computer
programming, and specifically in light of how difficult computer programming is (formally
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Figure 4.1: Automantic Programming Problem

speaking), it makes sense to consider the possible need to expand the cognitive science of
computer programming in such a way that it brings within scope models of creativity in
computer programming that are beyond standard, Turing-level computation.

Computation is standardly rendered precise within the space of functions from the
natural numbers N = {0, 1, 2, . . .} (or pairs, triples, quadruples, . . . thereof) to the natural
numbers; in other words, within

F = {f |f : N × . . . × N −→ N}.

This is a very large set. F is, as it is standardly said, an uncountably infinite set: one
cannot specify a Turing machine (TM) (standard computer program, etc.) that, eventually,
prints out every member of it Boolos et al. (2003). In short, F is the same size as the
real numbers R . (Size would normally be regimented with help from cardinal numbers,
but such precision is not needed here.) The set T , on the other hand, is precisely the
same size as the natural numbers N themselves. In the case of the natural numbers, each
element can of course be eventually printed by this simple algorithm: print 0, increment
by 1, print 1, increment by 1, print 2 . . .. A very small (but infinite) proper subset of it,
T (hence T ⊂ F), is composed of functions that Turing machines and their equivalents
(register machines; programs written in modern-day programming languages like Java,
Logo, Scheme, Prolog;the λ calculus, etc.; a discussion of these and others in the context
of an account of standard computation can be found in Bringsjord (1994)) can compute;
these are the Turing-computable functions. For example, multiplication is one function at
this level: it is acutely laborious but conceptually trivial to specify a Turing machine that,
with any pair of natural numbers m and n positioned on its tape before processing starts,
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leaves m · n on its tape after its processing is wrapped up.8

Hypercomputation is the computing, by various extremely powerful devices or ma-
chines, of those functions in F that are beyond the so-called Turing Limit; i.e., those
functions (composing H) in F that are not in T . The mathematics of hypercomputation
is now very developed; the devices, machines, definitions, and lemmas/theorems in the
relevant space are elegant and informative (e.g., see Siegelmann & Sontag, 1994; Siegel-
mann, 1999; Etesi & Nemeti, 2002; Copeland, 1998; Hamkins & Lewis, 2000; Bringsjord
et al., 2006b; Bringsjord & Zenzen, 2003).

To provide here a glimpse into the nature of hypercomputation, we can use the
traditional door opening into its simplest part: the famous halting problem, first presented
in the seminal Turing (1937). Let us assume that we have some, as it is called, totally
computable predicate Hs(n, k, u) that holds exactly when, or if and only if, Turing machine
n, taking as input u, halts in exactly k steps after its work is done. Predicate Hs is
classified as totally computable because, given the first-order formula

ψ := Hs(n, k, u),
where u and k are constants, n is a variable or parameter, and Hs is a three-place predicate,
there is some Turing machine m3 that is able determine this formula’s truth-value. That
is, the Turing machine here can infallibly give us a judgment, T (“true”) or F (“false”),
given assignments to the variable n.9 This implies that Hs ∈ Σ0, that is, that Hs is a
member of the starting point in what is called the Arithmetic Hierarchy (AH) (AH),10

a point composed of totally Turing-computable predicates. Put another way, a standard
way, we say that ψ is a Σ0 formula.

But now let us reflect upon the formula

ψ′ := ∃k′Hs(n, k′, u),
in which the former constant k becomes a variable k′ within the scope of a lone existential
quantifier. Since the ability to find out if there is a set of k′ steps after which an arbitrary
Turing machine halts cannot be accomplished without having on hand the power to solve

8One such specification is provided in classical form by Boolos & Jeffrey (1989).
9One widely known, successful approach is just for m3 to simulate n for k steps and see what ensues.

10For an introduction to AH, see any of the trio Bringsjord & Zenzen (2003), Davis et al. (1994), or
Kugel (1986).
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the halting problem, we know that this new formula cannot be understood by a Turing
machine. This formula is thus not a Σ0 one. However, the formula here is, as it is stan-
dardly said, partially computable, because (for a given Turing machine n) if the formula is
true, then the Turing machine alluded to above, denoted by m3, will produce T (see note
9). For this reason, we classify ψ′ as Σ1.11 When one builds From this point up, harder
and harder problems are defined, and this takes us further and further up the Arithmetic
Hierarchy. All of these problems on the way up, of course, exceed the power of standard,
Turing-machine-level computation to handle..

With this review in place, if we look at computer programming, from the standpoint
of the attempt to automate it as in automatic programming, we see that there is indeed
some evidence for the view that the human mind, when doing computer programming
from scratch (what we have called ‘programmingo’) is doing more than computing at the
level of a Turing machine. Programming a computer in ways allowing it to simulate human
cognition remains the original driving dream of cognitivism-based cognitive science (e.g.,
see Anderson & Lebiere, 2003), and certainly many, many advances in cognitive science
hinge on the ability of clever humans to write clever programs. But computer program-
ming, from the standpoint of the Arithmetic Hierarchy, is extremely difficult. In order to
be just a decent programmer, one must be able to decide whether two programs (written
in, say, Logo) compute the same underlying function. But given two Turing machines m

and m′, the question of whether they compute the same function f is, believe it or not,
a Π2 problem.12 It is hence not much of a surprise that automatic programming, the
attempt, as we have explained earlier, to engineer (Turing-level) computational systems
able to automatically write programs that compute certain functions, has proved to be

11To informally generalize this in standard fashion, the quantifier-based representation of (a “formula-
ized”) AH is:Σn The set of all formulae definable in terms of totally computable predicates that use at most n

quantifiers, the first of them being an existential quantifier.Πn The set of all formulae definable in terms of totally computable predicates that use at most n
quantifiers, the first of which is a universal one.Δn Here we have: Σn ∩ Πn

12To formally demonstrate this, we have only to introduce H(n, k, u, v ), which holds exactly when Turing
machine n halts in k steps, having begun with u on its tape to start with, and leaving v there on its tape
as output. We can then build atop H to produce the full representation of the problem we are dealing
with:

ψ′′ := ∀u∀v [∃kH(n, k, u, v ) ↔ ∃k′H(m, k′, u, v )]
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fiendishly difficult, as we have also explained. And yet when it comes to humans, elegant
programs of astonishing size are routinely written and verfified. This isn’t decisive ev-
idence in favor of the view that cognitive science needs to take seriously the possibility
that humans hypercompute, but it is evidence nonetheless. The evidence is not conclusive
because we lack some key information: We do not absolutely know whether the human
race is capable, eventually, of judging in the arbitrary case whether two programs are
equivalent. On the other hand, as to the strength of this evidence, it is worth noting
that we have here considered only the situation where the human programmero judges
whether two programs compute the very same function. But as a matter of fact, such
judgments are routinely applied to cases of n programs. This is even more demanding,
and presumably serves as additional evidence. To conclude, there thus remains open the
possibility that a more mature cognitive science of computer programming, built atop the
present dissertation and the work that it is in turn built atop, will need to consider models
based in the mathematics of hypercomputation.

4.3 “Visual Logic” and Suggestive Aspect of Experiments
At the conclusion of Chapter 2, we mentioned that there is a need to explore further

the obviously strong role that good human progammers give to visual or diagrammatic
techniques. The role of diagrammatic thinking and reasoning in visualizing data structures
and transformations on such data structures, during the creative, exploratory part of
programming, seems very important. Could it be possible to give to machines something
like the human ability to use visual techniques, so that the challenge T is met, at least
partially, thereby? After all, we know that sorting algorithms have a strong visual side;
it thus seems eminently reasonable to conjecture that discovering an innovative sorting
algorithm would, in the human case, make crucial use of visualization. And it is not just
sorting algorithms where this phenomena can be seen. For example, even number theorist
theorists have been known to see patterns in terms of diagrams.13 Could a computing
machine do something like this? Perhaps. In fact, note that just about any algorithm
that manipulates discrete data structures can be pictured diagrammatically. Arkoudas
& Bringsjord (2009) developed a computational model (Vivid) of diagrammatic problem
solving in previous research, and we believe, with them, that it could form the foundation
for an attempt to give a computing machine the capacity to programo via visual techniques

13Captivating examples, replete with figures, are given in Penrose (1994).
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of the general sort that we have seen in our human subjects. Indeed we imagine a symbiosis
as our research program moves forward: ascertain in more detail the visual techniques
used by first-rate human programmerso, and use this knowledge to engineer automatic-
programming techniques, based on extensions of Vivid informed by what is seen in the
human case.
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5. A NEW EDUCATIONAL PROGRAMMING LANGUAGE: REASON

Logicians and those using formal logic have for many centuries seen logic as the field able
to (when suitably deployed) foster clear thinking in human persons. This can of course be
easily confirmed by consulting any comprehensive introduction to logic, which invariably
offer rationales such as that by study of logic one will be less likely to be hoodwinked by
fallacious reasoning.14 Put in terms of a key distinction that can be found as far back
as 300 years BC (Aristotle), formal logic has been viewed as prescriptive, rather than
descriptive. In other words, logic has been here considered to be a discipline charged with
explaining, in detail, what representations, and processes over these representations, ought
to be followed by those aspiring to be clear thinkers.15 For people with this ambition, logic
seems to be just what is needed, since it is designed to enable declarative content to be
expressed in both a syntactically and semantically precise manner. In additional, logic
also provides methods of reasoning that can be directly carried over to the process of
computing and computer programming. Put in stark form, when someone today writes a
Prolog program, logic is thereby incarnated on the spot.

Unfortunately, only an exceedingly small percentage of people officially study logic;
this is true even if the population in question is restricted to the so-called “technologized”
world, where educational programming environments (such the ones featured in Chapter
3) are common. Though there are some rare exceptions, the vast majority of pre-college
mathematics curricula avoid logic, and the traditional introduction to formal logic is first
available, almost invariably, to first-year college students only an elective — with the ex-
ception of some computer science programs. (Rensselaer is itself one of the exceptions:
The BS in Computer Science requires study of logic.) Even those majoring in mathe-
matics or philosophy can often obtain their degrees in these disciplines without having to
take any official formal logic course. On the other hand, at least across the technologized

Portions of this chapter previously appeared as: Bringsjord, S. & Li, J. (2008). Toward Aligning
Computer Programming with Clear Thinking via the Reason Programming Language. In K. Waelbers, B.
Briggle & P. Brey (Eds.), Current Issues in Computing and Philosophy (pp. 156-170). Amsterdam, The
Netherlands: IOS Press.

14See, e.g., the extensive discussion of fallacies in Copi & Cohen (1997). See also Barwise & Etchemendy
(1999), which has the added benefit of setting out logic in a way designed to reveal its connection to
computer science — a connection central to Reason.

15Aristotilean (syllogistic) logic is presented in Organon, part of McKeon (1941). Coverage of the
relevant of Aristotelean logic to modern-day data structures, directly relevant to today’s programming
environments, a key focus of the present dissertation, is given in Glymour (1992).
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world, computer programming, as of course noted earlier in this dissertation, is quite often
introduced to young students.16 And not only that, but certain computer programming
languages, most prominently the Logo language and paradigm (and its many dialects and
variants) discussed in Chapter 3, have long been billed as helping young people become
clearer thinkers. It is somewhat doubtful that such languages can succeed in this regard
(for reasons to be briefly discussed below), but at any rate, it seems sensible to explore
an approach to programming that guarantees an intimate link between the clear thinking
required to write first-rate programs, and the kind of clear thinking that logic has histor-
ically sought to cultivate. Accordingly, Bringsjord and Li have invented a new computer
programming language standing at the nexus of computing and philosophy: Reason, a
language firmly based in the logic-based programming paradigm,17 and thus one offering
the intimate link in question to all who would genuinely use it.

The plan of this chapter is as follows. The next section (5.1) is a barbarically quick
and standard introduction to elementary deductive logic, given to ensure that the present
chapter will be understandable to readers from fields other than logic and philosophy. In
section 5.2, we define what we mean by ‘clear thinking,’ and provide two so-called logical
illusions (Johnson-Laird et al., 2000; Bringsjord & Yang, 2003): that is, two examples of
difficult problems which those capable of such thinking should be able to answer correctly
(at least after they have Reason at their disposal).18 The next section (5.3) is devoted
to a brief discussion of Logo, and Prolog and logic programming. Logo and Prolog are
essential to understanding the motivation for creating Reason. In section 5.4, Reason itself
is introduced in action, as it is used to solve the two problems posed in section 5.2. The
chapter ends with brief section on the future of Reason.

5.1 Elementary Logic Encapsulated
In formal, deductive logic,19 declarative statements, or as is it sometimes said, propo-

sitions, are generally represented by formulas in one or more formal languages associated
16In the United States, there is an Advanced Placement exam available to any high school student

seeking college credit for demonstrated competence in (Java) programming.
17Notice that we do not say ‘the logic programming’ paradigm. The paradigm we do not mention is a

much narrower one, tightly connected to Prolog, and the inference procedure known as resolution. Prolog
is discussed momentarily.

18These illusions appear in a larger list of puzzles given in Bringsjord (2008a), all developed and analyzed
in Li-Bringsjord collaboration, with an eye to eventually using them to anchor and test new educational
programming langauges for learning clear thinking.

19Informal logic is not directly connected to computer programming, and is left aside here. In addition,
we leave aside probabilistic/probability logic, an excellent summary of which is provided in Adams (1998).



www.manaraa.com

47

with formal logics, and these formal languages provide precise strings for carrying out
deduction over. The simplest formal languages (associated with deductive logics) that
have provided sufficient raw material for building corresponding programming languages
are: the propositional calculus, and the predicate calculus (or first-order logic, or just
FOL); together, this pair comprises what is generally called elementary deductive logic.
(The pair is often classified under ‘mathematical logic,’ because these formal logics have
traditionally been used to formalized mathematics itself, but that is not an activity central
to our programming-focused discussion.) We proceed now to give a very short review of
how declarative content is represented and reasoned over in these elementary logics.

With respect to the specific logics called out in the previous paragraph, and indeed in
general when it comes to any formal deductive logic, three main components are required:
one is purely syntactic/linguistic or string-based; one is semantic or model-based; and
one is meta-theoretical in nature. The syntactic component includes specification of the
alphabet of a given formal language, the grammar for building well-formed formulas (as
they are traditionally called: ‘wffs’) from this alphabet, and, more importantly, a so-
called proof theory that precisely sets out how and when one or more formulae can be
deductively inferred from a set of formulae. The semantic component includes a rigorous
account of the conditions that must be met in order for a formula in a given formal
language for a given logic to have a semantic value such as ‘true’ or ‘false.’ (Other values,
e.g., ‘indeterminate’ and ‘probable,’ are possible, but we are simplifying here.) The meta-
theoretical component includes theorems, lemmas, conjectures, hypotheses etc. concerning
the trio just enumerated: that is, the syntactic component, the semantic component, and
connections between them. In this chapter, we focus on the syntactic side of things.
Ebbinghaus et al. (1994) give a thorough, but yet refreshingly economical, coverage of the
formal semantics and meta-theory of elementary deductive logic.

We mentioned that an alphabet must be specified for each relevant formal language.
In the case of the propositional calculus, this alphabet is standard and well-known. It is
composed, first, of a collection of so-called propositional variables:

p1, p2, . . . , pn, pn+1, . . .
Standard practice is to make use of p, q, and r, by setting p1 to p, p2 to q, and p3 to r. The
alphabeth also contains a standard quintet of truth-functional operators or connectives;
the are: ¬,→,↔,∧, ∨. These operators can be intuitively understood, without danger,



www.manaraa.com

48

in the following manner, respectively: ‘not,’ ‘implies’ (or ‘if then ’), ‘if and only if’
(or ‘provided that’ or ‘exactly when’), ‘and,’ and ‘or.’ Armed with this alphabet, one can
construct formulae that represent declarative content. For instance, to say that ‘if Alvin
hits Bill, then Bill hits Alvin, and so does Charlie,’ we could write

ah → (bh ∧ kh)
where the propositional variables here pick out the obvious underlying claims.

We can get to the more articulate FOL by introducing two standard and much-used
(in e.g. computer science) quantifiers to the symbolic machinery given in the previous
paragraph. The pair of quantifiers are: ∃x, which is normally read as: ‘there exists an x

such that . . .’) and ∀x (‘for all x the following . . . holds’). The first of these quantifiers
is is standardly called the existential quantifier, and the second is called the universal
quantifier. In addition, FOL’s language side also includes a collection of of variables (like
x, y, etc., operating here pretty much as variables work in elementary algebra), names for
individual objects (often called constants, predicates or relation symbols (used to denote
attributes that individual things can have or lack), and symbols that denote functions.
For an example, the linguistic machinery we now have available enables us to represent
the English sentence ‘Everyone loves anyone who is served by someone’ is represented as

∀x∀y(∃zServes(y, z) → Loves(x, y))
We have now defined the formal languages of the logics that we focus on, and

by that have explained how declarative data is represented in wffs. Proof theory must
be applied now to make plain how inference over this data works. We will discuss this
later, at the point where we turn to coverage of the kind of proofs-as-programs that have
inspired the attempt to build Reason. We will then see that in the approach embodied by
Reason, computer programs are in the end instructions for how to generate linked chains
of inference from formula to formula. Before turning to inference, though, we must as
promised explicate the semantic sphere we said at the outset of the chapter is one of the
main components of any classical deductive logic.

Recall that we presented above the standard quintet of boolean operators; that is,
negation, conjunction, and so on. These operators are standardly defined by truth tables,
to be found in any competent introduction to elementary deductive logic, for instance
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Bergmann et al. (1997); Barwise & Etchemendy (1999).20 (Slightly different notation
may be used to specify these tables, but the differences are not significant, meaning-wise.)
Truth tables define the semantic value of a formula that one wants to understand, as long
as the components of the formula in question are assigned semantic values. This makes
the entire process compositional. The easiest and simplest kind of truth-table is the one
that defines negation. In negation, if some wff φ is assigned the semantic value true (T,
then ¬φ, which is the negation of φ, is declared to be F. The first row in the standard
truth table given immediately below regiments this. The only other possibility to consider
is of course when the formula φ has an “input value” of F. In this case, the semantic value
of φ is flipped over to T; again, see the table immediately below.

φ ¬φ

T F

F T

The truth tables that define the other four boolean operators, or truth-functional con-
nectives, are easy to understand, and are given now in sequence. Again, the reader can
be confident that these table are an invariant part of the foundation for any standard
exposition of formal deductive logics. Because of that, more detailed explanation can be
found, as we have said, in introductory textbooks, such as Bergmann et al. (1997).

φ ψ φ ∧ ψ

T T T

T F F

F T F

F F F

φ ψ φ ∨ ψ

T T T

T F T

F T T

F F F

φ ψ φ → ψ

T T T

T F F

F T T

F F T

φ ψ φ ↔ ψ

T T T

T F F

F T F

F F T

The reader can observe that the truth-table defining disjunction says that when
both sub-formulae in a disjunct are true, the composite disjunction is rendered true. Such
a disjunction is standardly called an inclusive disjunction. In, as it is commonly called,
an exclusive disjunction, one of the sub-formulae is true, but only one.

both. This distinction becomes particularly important if one is attempting to sym-
bolize parts of English (or any other natural language). If we wanted to represent that

20The reader should not confuse truth tables with what are typically called truth trees. Thorough
coverage of the latter is provided in Bergmann et al. (1997).
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information conveyed by the English sentence

The Mets will either win or lose the Series.

it would be a poor idea to use a disjunctive formula such as

Mw ∨ Ml,

for an obvious reason: It is impossible (given how baseball is defined) for the Mets to both
win and lose (the Series). Sometimes, special symbols are used to indicate that the kind of
disjunction being used is exclusive, not inclusive. For example, a common symbol used to
denote exclusive disjunction is ⊕, which, following standard practice, is defined through
the following kind of truth-table.

φ ψ φ ⊕ ψ

T T F

T F T

F T T

F F F

Assume now that we have on hand a truth-value assignment, v (that is, an assign-
ment of T or F to each propositional variable pi). Given this, we can follow standard
parlance to declare that v “makes true,” or “models,” or — in terminology that is fre-
quently used in computational contexts — “satisfies” a given formula φ. This relationship
is standardly expressed by this equation:

v |= φ.

When we have a formula which has the attribute that there is some model that satisfies
it, this formula is said to be satisfiable. A formula that cannot possibly be true on any
model (e.g., ¬(ψ → ψ)) is classified as unsatisfiable. Of course, Some formulae hold on
every single model. For example, the formula ((φ ∨ ψ) ∧ ¬ψ) → φ is such a formula. Such
formulae are standardly classified valid, and are sometimes categorized as validities. To
convey that a formula φ is valid one standardly writes

|= φ.
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Another important semantic concept is consequence. A particular formula φ is classified
as a consequence of a set Φ of formulae just in case every single truth-value assignment on
which all of members of Φ are true is also an assignment on which φ itself is true. This is
traditionally conveyed by writing: Φ |= φ.

The final very important concept that is in the semantic side of the propositional calculus
is that of consistency. We follow tradition and say that a set Φ of formulae is semantically
consistent if and only if there is a truth-value assignment on which all of the elements of Φ
hold. As a check of understanding, we encourage the reader to verify that a conjunction
of formulae extracted from a semantically consistent set must invariably be satisfiable.

And now, what about the semantic side of FOL, first-order logic?
Unfortunately, the formal semantics of FOL gets quite a bit more tricky than the

truth table-based machinery we have given for the propositional (i.e., the non-quantificational)
level. The central concept is that in FOL formulas are said to be true (or false) on mod-
els (this is nothing new, so far). That some first-order formula φ is true on a model is
often written as M |= φ. (This is often read like this: “I satisfies, or models, φ.”) For
instance, the formula ∀x∃yRyx might mean, on the standard model for arithmetic, that
for every natural number n, there is a natural number m that is “to the right of” n on the
natural-number line, which is to say, that m > n. In this case, the domain is the set of
natural numbers, that is, N; and R symbolizes ‘right of.’ Much more could of course be
said about the formal semantics (or model theory) for FOL — but this is an advanced topic
beyond the scope of the present, brief treatment, given only to make facilitate exposition
of Reason. For a fuller treatment that uses the traditional notation of model theory, which
we have pretty much followed, see Ebbinghaus et al. (1994).

5.2 What is Clear Thinking?
The concept of clear thinking, at least to a significant degree, can be operationally

defined with help from psychology of reasoning; specifically with help from, first, a distinc-
tion between two empirically confirmed modes of reasoning: context-dependent reasoning,
versus context-independent reasoning; and, two, from a particular class of stimuli used
in experiments to show that exceedingly few people can engage in the latter mode. The
class of stimuli are what have been called logical illusions. We now proceed to explain the
distinction and the class.
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5.2.1 Context-Dependent v. Context-Indepedent Reasoning

In an wide-ranging paper in Behavioral and Brain Sciences that draws upon em-
pirical data accumulated over more than half a century, Stanovich & West (2000) explain
that there are two dichotomous systems for thinking at play in the human mind: what
they call System 1 and System 2.

Reasoning performed on the basis of System 1 thinking is bound to concrete contexts
and is prone to error; reasoning on the basis of System 2 cognition “abstracts complex
situations into canonical representations that are stripped of context” (Stanovich & West,
2000, p. 662), and when such reasoning is mastered, the human is armed with powerful
techniques that can be used to handle the increasingly abstract challenges of the mod-
ern, symbol-driven marketplace. System 1 reasoning is context-dependent, and System 2
reasoning is context-independent. Recently, the presence of these two radically different
modes in human thinking has been treated in a lively and readable way by Kahneman
(2013). We now explain the difference in more detail.

Psychologists have devised many tasks to illuminate the distinction between these
two modes of reasoning (without always realizing, it must be granted, that that was what
they were doing). One such problem is the Wason Selection Task (Wason, 1966), which
runs as follows.

Suppose that you are dealt four cards out of a larger deck, where each card in the
deck has a digit from 1 to 9 on one side, and a capital Roman letter on the other. Here is
what appears to you when the four cards are dealt out on a table in front of you:

E K 4 7

Now, your task is to pick just the card or cards you would turn over to try your best at
determining whether the following rule is true:

(R1) If a card has a vowel on one side, then it has an even number on the other side.

Less than 5% of the educated adult population can solve this problem (but, predictably,
trained mathematicians and logicians are rarely fooled). This result has been repeatedly
replicated over the past 15 years, with subjects ranging from 7th grade students to il-
lustrious members of the Academy (Bringsjord et al., 1998). About 30% of subjects do
turn over the E card, but that isn’t enough: the 7 card must be turned over as well.
The reason is as follows. The rule in question is a so-called conditional in formal logic,
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that is, a proposition having an if-then form, which is often symbolized as φ → ψ, where
the Greek letters here are variables ranging over formulas from some logical system. As
the truth-tables routinely taught to young pre-12 math students make clear (e.g., Bumby
et al., 1995, chapter 1), a conditional is false if and only if its antecedent, φ, is true, while
its consequent, ψ, is false; it’s true in the remaining three permutations. So, if the E card
has an odd number on the other side, (R1) is overthrown. However, if the 7 card has
a vowel on the other side, this too would be a case sufficient to refute (R1). The other
cards are entirely irrelevant, and flipping them serves no purpose whatsoever, and is thus
profligate.

This is the abstract, context-independent version of the task. But now let’s see
what happens when some context-dependent reasoning is triggered in you, for there is
incontrovertible evidence that if the task in question is concretized, System 1 reasoning
can get the job done (Ashcraft, 1994). For example, suppose one changes rule (R1) to this
rule:

(R2) If an envelope is sealed for mailing, it must carry a 20 cent stamp on it.

And now suppose one presents four envelopes to you (keeping in mind that these envelopes,
like our cards, have a front and back, only one side of which will be visible if the envelopes
are “dealt” out onto a table in front of you), viz.,

sealed envelope unsealed envelope env. w/ 20 cent stamp env. w/ 15 cent stamp

Suppose as well that you are told something analogous to what subjects were told in
the abstract version of the task, namely, that they should turn over just those envelopes
needed to check whether (R2) is being followed. Suddenly the results are quite different:
Most subjects choose the sealed envelope (to see if it has a 20 cent stamp on the other
side), and this time they choose the envelope with the 15 cent stamp (to see if it is sealed
for mailing).

5.2.2 The King-Ace Problem

Now we come to a logical illusion, the King-Ace Problem. As we present the problem,
it’s a slight variant21 of a puzzle introduced by Johnson-Laird (1997). Here it is:

Assume that the following is true:
21The variation arises from disambiguating Johnson-Laird’s ‘s or else s′’ as ‘either s or s′, but not both.’
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‘If there is a king in the hand, then there is an ace in the hand,’ or ‘If there is not a
king in the hand, then there is an ace in the hand,’ — but not both of these if-thens
are true.

What can you infer from this assumption? Please provide a careful justification for
your answer.

Your are encouraged to record your own answer. We return to this problem later, when
using Reason to solve it. But please note that the correct answer to the problem is not
‘There is an ace in the hand,’ but rather the (counterintuitive!) proposition that there
isn’t an ace in the hand. If Reason is on the right track, use of it will help students see
that this is the right answer.

5.2.3 The Wine Drinker Problem

Now let us consider a second logical illusion, an interesting puzzle devised by
Johnson-Laird & Savary (1995) that has the same general form as Aristotle’s syllogisms:

Suppose:

• All the Frenchmen in the restaurant are gourmets.

• Some of the gourmets are wine drinkers.

Does it follow that some of the Frenchmen are wine drinkers? Please provide a careful
justification for your answer.

We will return to this problem later, when using Reason to solve it. But note for now
that the correct answer is ‘No.’ Reason will itself provide a justification for this negative
answer.

5.3 The Logo Programming Language; Logic Programming
As noted earlier in the dissertation, when youth learn to program by using Logo,22

by far the programming language most used in the States to teach programming in grades
6–12, almost without exception, they produce instructions designed drive a turtle through
some sequence of states. For example, the procedure

to square

repeat 4 [forward 50 right 90]

end
22 Logo Fundation (2012) http://el.media.mit.edulogo-foundation/logo/programming.html (Date Last

Accessed November 12,2014).
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causes the turtle to draw a square. In a second, more sophisticated mode of programming,
the Logo programmer can process lists in ways generally similar to those available to the
Lisp programmer. Ever since a seminal paper by Black et al. (1988), it has been known that
while students who program in the second way do seem to thereby develop some clearer
thinking skills, the improvement is quite slight, the cognitive distance from processing
lists to better logical reasoning is great, and hence transfer from the first activity to the
second is very problematic.23 In an intelligent reaction to this transfer challenge, Black et
al. make a move that is quite interesting from the perspective of our own objective, and
the language Bringsjord and Li have built to meet it: viz., they consider whether teaching
Prolog24 might be a better strategy for cultivating in those who learn it a significant
gain in clear thinking. Unfortunately, there are five fatal problems plaguing the narrow
logic programming paradigm of which Prolog is a concretization. Here’s the quintet, each
member of which, as shall soon be seen, is overcome by Reason:

1. Logic programming is based on a fragment of full first-order logic: its inexpressive. Human
reasoning, as is well-known, not only encompasses full first-order logic (and hence on this
score alone exceeds Prolog), but also modal logic, deontic logic, and so on.

2. Logic programming is “lazy.” By this we mean that the programmer doesn’t herself construct
an argument or proof; nor for that matter does she create a model or countermodel.

3. While you can issue queries in Prolog, all you can get back are assignments to variables, not
the proofs that justify these assignments.

4. In addition, Prolog can’t return models or counter-models.

5. Finally, as to deductive reasoning, Prolog locks those who program in it into the rule of
inference known as resolution.25 Resolution is not used by humans in the business of carrying
out clear deductive thinking. Logic and mathematics, instead, are carried out in what is
called natural deduction (which is why this is the form of deduction almost invariably taught
in philosophy and mathematics, two prominent fields among those directly associated with
the cultivation of clear thinking in students).

23In particular, it turns out that making a transition from “plug-and-chug” mathematics to being able
to produce proofs is a very difficult one for students to achieve (e.g., see Moore, 1994). There is further
negative data in the case of Logo (e.g., see Louden, 1989; Pea et al., 1987).

24There is of course insufficient space to provide a tutorial on Prolog. We assume readers to be familiar
with at least the fundamentals. Clocksin & Mellish (2003) give a classic introduction to Prolog.

25All of resolution can essentially be collapsed into the one rule that from p ∨ q and ¬p one can infer q.
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5.4 The Reason Programming Language
5.4.1 Reason in the Context of the Four Paradigms of Computer Programming

There are four programming paradigms: procedural, reflected, e.g., in Turing ma-
chines themselves, and in various “minimalist” languages like those seen in foundational
computer science texts (e.g., Davis et al. (1994), Pascal, etc.); functional, (e.g., Scheme,
ML, and purely-functional Common Lisp (Shapiro, 1992; Abelson & Sussman, 1996));
object-oriented; and declarative (reflected, albeit weakly, in Prolog (Clocksin & Mellish,
2003)). Reason is in, but is an extension of, the declarative paradigm.26

Reason programs are specifically extensions and generalizations of the long-estab-
lished concept of logic programs in computer science (presented succinctly in, e.g., Ebbing-
haus et al., 1994, chapter “Logic Programming”).

5.4.2 Proofs as Programs through a Simple Denotational Proof Language

In order to introduce Reason itself, we first introduce the syntax within it cur-
rently used to allow the programmer to build purported proofs, and to then evaluate
these proofs to see if they produce the output (i.e., the desired theorem). This syntax
is based on the easy-to-understand type-α denotational proof language NDL invented by
Konstantine Arkoudas (for background, see Arkoudas, 2000; Bringsjord et al., 2006a) that
corresponds for the most part to systems of Fitch-style natural deduction often taught
in logic and philosophy. Fitch-style natural deduction was first presented in 1934 by two
thinkers working independently to offer a format designed to capture human mathematical
reasoning as it was and is expressed by real human beings such as Gentzen (1935) and
Jaśkowski (1934). Streamlining of the formalism was carried out by Fitch (1952). The
hallmark of this sort of deduction is that assumptions are made (and then discharged) in
order to allow reasoning of the sort that human reasoners engage in.

Now here is a simple deduction in NDL, commented to make it easy to follow. This
deduction, upon evaluation, produces a theorem that Newell and Simon’s Logic Theorist,

26As is well known, in theory any Turing-computable function can be implemented through code written
in any Turing-complete programming language. There is nothing in principle precluding the possibility
of writing a program in assembly language that, at a higher level of abstraction, processes information in
accordance with inference in many of the logical systems that Reason allows its programmers to work in.
(In fact, as is well-known, the other direction is routine, as it occurs when a high-level computer program in,
say, Prolog, is compiled to produce code corresponding to low-level code; assembly language, for example.)
However, the mindset of a programmer working in some particular programming language that falls into
one of the four paradigms is clearly the focus of the present discussion, and Turing-completeness can safely
be left aside.
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to great fanfare (because here was a machine doing what “smart” humans did), was able
to muster at the dawn of AI in 1956, at the original Dartmouth AI conference.

// Here is the theorem to be proved,

// Logic Theorist’s ‘‘claim to fame’’:

// (p ==> q) ==> (˜q ==> ˜p)

Relations p:0, q:0. // Here we declare that we have two

// propositional variables, p and q.

// They are defined as 0-ary relations.

// Now for the argument. First, the antecedent (p ==> q)

// is assumed, and then, for contradiction, the antecedent

// (˜q) of the consequent (˜q ==> ˜p).

assume p ==> q

assume ˜q

suppose-absurd p

begin

modus-ponens p ==> q, p;

absurd q, ˜q

end

If, upon evaluation, the desired theorem is produced, the program is successful. In the
present case, sure enough, after the code is evaluated, one receives this back:

Theorem: (p ==> q) ==> (˜q ==> ˜p)

Now let us move up to programs written in first-order logic, by introducing quantifi-
cation. As you will recall, this entails that we now have at our disposal the quantifiers ∃x

(‘there exists at least one thing x such that . . .’) and ∀x (‘for all x . . .’). In addition, there
is now a supply of variables, constants, relations, and function symbols; these were dis-
cussed above. What follows is a simple NDL deduction at the level of first-order logic that
illuminates a number of the concepts introduced to this point. The code in this case, upon
evaluation, yields the theorem that Tom loves Mary, given certain helpful information. It
is important to note that both the answer and the justification have been assembled, and
that the justification, since it is natural deduction, corresponds to the kinds of arguments
often given by human beings.
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Constants mary, tom. // Two constants announced.

Relations Loves:2. // This concludes the simple signature, which

// here declares Loves to be a two-place relation.

// That Mary loves Tom is asserted:

assert Loves(mary, tom).

// ’Loves’ is a symmetric relation, and this is asserted:

assert (forall x (forall y (Loves(x, y) ==> Loves(y, x)))).

//Now the evaluable deduction proper can be written:

suppose-absurd ˜Loves(tom, mary)

begin

specialize (forall x (forall y (Loves(x, y) ==> Loves(y, x)))) with mary;

specialize (forall y (Loves(mary, y) ==> Loves(y, mary))) with tom;

Loves(tom,mary) BY modus-ponens Loves(mary, tom)

==> Loves(tom, mary), Loves(mary, tom);

end;

Loves(tom,mary) BY double-negation ˜˜Loves(tom,mary)

When this program is executed, we obtain the result we want:

Theorem: Loves(tom,mary).

As is desired, the answer, and the argument paired with it, are produced; and because
the argument is supposition-driven in nature (called “natural deduction”, standardly),
the output here is of a kind that human reasoners and programmers would tend to craft
themselves.

To this point, we have understood programs to be proof-generating structures. But
now, what about the semantic component of deductive logics, which we referred to above?
In other words, what is the role of models or interpretations, which as we have noted,
appear in this component, in the approach discussed here? Moving beyond NDL, but still
inspired by it and related systems, in Reason, programs can be written to produce, and
to manipulate, interpretations and models seen in the semantic side of deductive logics.
In addition, while in NDL the full cognitive burden is borne by the programmer, Reason
can be queried about whether certain claims are provable. In addition, in Reason, the
programmer can set the degree to which the system is intelligent on a session-by-session
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basis. This last property of Reason gives rise to the concept that the system can be set
to be “oracular” at a certain level. That is, Reason can function as an oracle up to some
pre-set threshold. One candidate threshold is to allow the oracle to reason autonomously,
as long as that reasoning does not involve either of the two quantifiers ∃ and ∀. The
idea here is to allow Reason to be able to prove on its own anything that requires only
reasoning at the level of simple boolean logic.

5.4.3 Cracking King-Ace and Wine Drinker with Reason

5.4.3.1 Cracking the King-Ace Problem with Reason

In this example, the selected logic to be used with Reason is standard first-order
logic as described above, with the specifics that reasoning is deductive and Fitch-style.
The system is assumed to have oracular ability up to the level just beneath use of the
quantifiers; that is, the programmer can ask Reason itself to prove things as long as only
reasoning at the level of the propositional calculus is requested. This request is signified
by use of prop.

To save space, we assume that the programmer has made these selections through
prior interaction with Reason. Now, given the following two propositions, is there an ace
in the hand? Or is it the other way around?

F1 If there is a king in the hand, then there is an ace in the hand; or: if there isn’t a king
in the hand, then there is an ace in the hand.

F2 Not both of the if-thens in F1 are true.

In this case, we want to write a Reason program that produces the correct answer,
which is “There is not an ace in the hand.” We also want to obtain certification of a proof
of this answer as additional output from our program.

We can obtain what we want by first declaring in Reason our key alphabet for the
purposes at hand, which in the present case consists in simply announcing two proposi-
tional variables, K (for ‘There is a king in the hand’) and A (for ‘There is an ace in the
hand’). For the next step, we present the facts to Reason. Note that Reason responds by
saying that the relevant things are known, and added to a knowledge base (KB1).

> (known F1 KB1 (or (if K A) (if (not K) A)))

F1 KNOWN
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F1 ADDED TO KB1

> (known F2 KB1

(not (and (if K A) (if (not K) A))))

F2 KNOWN

F2 ADDED TO KB1

Our next move is to present the following partial proof to Reason. (It’s a partial
proof because the system itself is called upon to infer that the negation of a conditional
entails a conjunction of the antecedent and the negated consequent. More carefully put,
from (not (if P Q)) it follows that (and P (not Q)).)

(proof P1 KB1

demorgan F2;

assume (not (if K A))

begin

(and K (not A)) by prop on (not (if K A));

right-and K, (not A)

end

assume (not (if (not K) A))

begin

(and (not K) (not A) by prop on (not (if (not K) A)));

right-and (not K), (not A)

end

proof-by-cases (or (not (if K A)) (not (if (not K) A))),

(if (not (if K A)) (not A)),

(if (not (if (not K) A)) (not A)))

When this proof is evaluated, Reason responds with:

PROOF P1 VERIFIED

ADDITIONAL KNOWNS ADDED TO KB1:

THEOREM: (not A)

We now make the perhaps not-unreasonable assertion that anyone who takes the
time to construct and evaluate this program (or for that matter any reader who takes the
time to study it carefully to see why (not A) is provable) doesn’t succumb to the logical
illusion in question any longer. Now we can proceed to issue an additional query:
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> (provable? A)

NO

DISPLAY-COUNTERMODEL OFF

If the flag for countermodeling was on, Reason would display a truth-table showing that
A can be false while F1 and F2 are true.

5.4.3.2 Cracking the Wine Drinker Problem with Reason

Let us remember the three relevant statements, in English:

F3 All the Frenchmen in the restaurant are gourmets.

F4 Some of the gourmets are wine drinkers.

F5 Some of the Frenchmen in the restaurant are wine drinkers.

To speed the exposition, let us assume that the Reason programmer has asserted these
into knowledgebase KB2, using the expected infix syntax of first-order logic, so that, for
example, F3 becomes (where of course we are using forall for ∀):

(forall x (if (Frenchman x) (Gourmet x)))

In addition, let us suppose that Reason can once again operate in oracular fashion at
the level of propositional reasoning, that the flag for displaying countermodels has been
activated, and that we have introduced the names/constants object-1 and object-2 to
Reason for this session. Given this, please study the following interaction.

> (proof P2 KB2

begin

assume (and (Frenchman object-1) (Gourmet object-1)

(not (Wine-drinker object-1)));

assume (and (Gourmet object-2) (In-restaurant object-2)

(Wine-drinker object-2));

not-provable (F3 F4 F5) => (some x (and (In-restaurant x)

(Wine-drinker x)))

end)

PROOF P2 VERIFIED

DISPLAY-COUNTERMODEL?
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> Y

In the situation the programmer has imagined, all Frenchmen are gourmets, and
there exists someone who is both a wine-drinker and a gourmet. This locks in the truth
of both of the first two statements. Yet, it is not true that there exists someone who is
both a Frenchman and a wine drinker. This means that F5 is false; more generally put,
we have that F5 is not a valid deduction from the conjunction of F3 and F4.

When counter-examples are rendered in visual form, they can be more quickly
grasped by human programmers. Figure 5.1 shows such a counter-example relevant to
the present case.

Object-1 Object-2

IN-THE-RESTAURANT WINE-DRINKERGOURMETFRENCHMANNON-WINE-DRINKER

Figure 5.1: Visual Countermodel in Wine Drinker Puzzle
(provided via a grammar and program writ-
ten by Andrew Shilliday and Joshua Taylor
that Reason can call). The reuse of this figure
here, from Bringsjord (2008a), is permitted by
Selmer Bringsjord.

5.5 The Future of Reason
The full and fully stable implementation of Reason is not yet complete. Fortunately,

this implementation is not far off, as it is aided by the fact that this implementation is
to a high degree meta-programming over computational building blocks that have been
provided by others.27 For example, resolution-based deduction is computed by the auto-
mated theorem provers Vampire (Voronkov, 1995), Otter (Wos, 1996; Wos et al., 1992),
and SNARK (Stickel et al., 1994) (and others as well), while natural deduction-style auto-
mated theorem proving is provided by the Oscar system invented by philosopher Pollock
(1989, 1995). As to automated model finding for first-order logic, a number of mature,
readily available systems now compute this relation as well, for example Paradox and
Mace (Claessen & Sorensson, 2003). At the propositional level, truth-value assignments
are automatically found by many SAT solvers (e.g., see Kautz & Selman, 1999).

27Bringsjord & Ferrucci (1998) include a discussion of meta-programming in the logic programming field.
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While it seems sensible to strive for teaching clear thinking via programming lan-
guages that, by their very nature, are more intimately connected to the formalisms and
processes that (from the perspective of logic, anyway) constitute clear thinking, noting
this is not sufficient, obviously. One needs to empirically test determinate hypotheses. We
need, specifically, to test the hypothesis that students who learn to program in Reason will
as a result show themselves to be able, to a higher degree, to solve the kind of problems
that are resistant to context-dependent reasoning. Accordingly, empirical studies of the
sort we have carried out for other systems (e.g., Rinella et al., 2001; Bringsjord et al., 1998)
are being planned for Reason. Finally, we are considering adding to curricula in which
Reason is taught, explicit explanation, for students, of simplified versions of the Curry-
Howard Isomorphism (Girard, 1989), a cluster of theorems and mappings that grounds
the proofs-as-programs approach.
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6. THE FUTURE

6.1 A Necessary Confession
Certainly the research program of which this dissertation is a part is still embryonic.

As stated at the outset, the goal for the dissertation was to take appreciable steps toward
something that does not exist: a cognitive science of computer programming. Overall,
we conclude, humbly, that the work reported above shows that we are making some
significant but still-small progress toward meeting challenges E and T, and vindicating
our core, driving approach of meta-cognitivism. We are far from being able to offer
students an efficacious learn-to-program environment rooted in formalisms for representing
programs and programmers, or in other words a “commercial-grade” K–12 programming
environment rooted in meta-cognitivm; and we are far from being able to contribute to
AP on the strength of dissecting human programming2 ingenuity. But the springboard
has been built by the results achieved and reported herein.

There is in particular much opportunity for future experiments that present subjects
with extremely difficult programming problems, and it is perhaps in analyzing the cognition
constitutive of solving such problems that real fruit for the advance of AP will be found.
These problems would presumably be those which are such that, as far as anyone can tell,
infinitary concepts and constructions are necessary as the human moves toward producing
a program. We do have such examples in formal logic. For example, there currently is
no finitary way of proving that certain theorems (e.g., Goodstein’s Theorem) which are
independent of Peano Arithmetic (therefore making Peano Arithmetic incomplete) are
nonetheless true and provable.28 It would be very interesting, and perhaps quite revealing,
to pose programming problems that require the kind of computational ingenuity required
to see that Goodstein’s Theorem holds.29

6.2 Creativity, Computer Programming, and Automatic Programming
We begin this section by noting the brute fact that in AI, and in computational

cognitive modeling (CCM), which, as we have noted earlier in the dissertation, is a direct
incarnation of cognitivism, creativity is for the most part not investigated.

28A summary of Goodstein’s Theorem is provided by Smith (2013).
29Smith (2007) provides a nice overview of Goodstein’s Theorem in the context of Gödelian incomplete-

ness.

64
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The field of artificial intelligence (AI) is ultimately devoted to mechanizing human (and,
for some, animal30) cognition. As Charniak & McDermott (1985, p. 7) express it in their
classic introduction to the field:

The ultimate goal of AI, which we are very far from achieving, is to build a
person, or, more humbly, an animal.

Focusing on the less humble goal, we note that one of the hallmarks of (biologically
normal) human persons is that they are creative; in some cases, very creative. And one of
the hallmarks of the particular sciences (as well as, for that matter, of the humanities) is
that human creativity is greatly, perhaps even singularly, revered, and desired. Whether
it’s the recent proof of Fermat’s Last Theorem from Wiles (Wiles & Taylor, 1995; Wiles,
1995), Othello from Shakespeare, the theory of relativity from Einstein, or the minimum
spanning tree algorithm from Prim (1957), it is the stunningly creative achievement that
occupies a near-divine place in human culture. Even in everyday human life, far from the
rarefied reaches of the particular sciences, creativity abounds, and is venerated: the 7th

grade teacher who invents a new step-by-step approach to algebra word problems for his
students, the 7th grade student who writes a short story never seen before, the cook who
invents a new dish on the fly, the undergrad in Comp Sci 101 who produces elegant code
to compute some function, and so on, ad infinitum.

Despite the centrality and status of human creativity, nowhere do Charniak & Mc-
Dermott (1985) cover the attempt to mechanize creativity; the index is devoid of the
topic. Things are no less peculiar if we fast-forward to the present time: The dominant
textbook today for introducing students to AI, a book which, whatever its defects might
be, is frequently praised as remarkably comprehensive, is Artificial Intelligence: A Modern
Approach (Russell & Norvig, 2009); and nowhere in this hefty tome is creativity discussed.
In parallel with its predecessor from over two decades back, you will search in vain for
creativity in the index.31

30In this dissertation, following the approach of Bringsjord and Arkoudas, as the reader will have noticed,
the focus is on the human case. For weal or woe, this focus is typical of work in cognitive science (e.g., see
von Eckardt, 1995), and in AI, as far as we can tell, work on creativity has traditionally been at the level
of humans.

31Though we don’t include full discussion here, the situation is fundamentally the same in what we called
cognitivism. E.g., consider computational cognitive modeling (CCM), the part of cognitive science that
is AI’s sister field. CCM is devoted to providing computational simulations of various aspects of human
cognition. Anderson & Lebiere (2003) offer an assessment of the attempt to computationally model, in
working computer programs, “all” of human cognition. (They see this attempt as being inaugurated by
Newell.) Remarkably, nowhere in the assessment is there a discussion of the degree to which human
creativity has been computationally modeled. Were the assessment to be included, the result would be
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6.2.1 An Exception: Story Generation

Despite what the AI textbooks indicate, some computationally oriented researchers
have devoted considerable time and energy to the attempt to build a machine capable of
creative behavior.32 An example can be found in some of the work Bringsjord and col-
leagues have carried out (Bringsjord & Ferrucci, 2000; Bringsjord et al., 2001). This work
was targeted specifically at mechanizing (humble forms of) literary creativity; specifically
storytelling, or, as it is known in AI, story generation. In personal conversation, Peter
Norvig and others in AI have remarked to Bringsjord since the advent of the Brutus story
generation system that, despite claims by some that storytelling is at the very heart of
human cognition (e.g., Schank, 1995), the brute empirical fact remains that storytelling
is not at the heart of what computer scientists and AIniks are trained to do or in practice
do, and story generation systems don’t appear to offer a capability that would be a helpful
addition to the toolkit of those attempting to build ever smarter machines. Whether or
not these observations constitute fatal objections to the pursuit of automatic storytelling,
they are certainly observations — and we have reflected upon them.33

As far as we can tell, None of the extant work in automatic programming has at-
tempted to tackle the problem that drives this field by facing up to the fact that computer
programming (on significant problems) requires remarkable creativity of human program-
mers. The underlying reason why creativity is required is that the programming problem
is, as pointed out in §4.2 , a Turing-unsolvable problem.34 Our suspicion, which goes back
to the earliest days of thinking about these issues by Li and collaborators, is that whenever
one attempts to render φ-ing from the human sphere in the form of computation, where
φ-ing requires humans to solve problems the general form of which is Turing-unsolvable,
cognitive science and computer science (particularly AI) will intersect. In our own case,
the plan to exploit an understanding of human creativity in computer programming in
order to advance automatic programming is clearly in this intersection.

that CCM has achieved exceedingly little in this direction.
32There is of course a large literature on creativity from the perspective of philosophy, psychology/psy-

chometrics, and so on, but we are specifically concerned for the moment with explicit attempts to engineer
creative machines.

33We suspect that complaints to the effect that story generation systems aren’t exactly central to
computation-based fields (like AI, computer science, large parts of cognitive science (e.g., CCM; see note
31, etc.) would be expressed by many against many other types of creative computational systems. For
example, AARON (Cohen, 1995), the computational system that, instead of generating stories, generates
images, is subject to the same complaints as those lodged against Brutus.

34Recall that automatic programming, which surely requires making decisions as to whether two com-
puter programs compute the same function, is harder than the halting problem.
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6.3 Programming East versus West
There is an obvious need to in the future extend our research program in such as

way as to address the following four questions:

1. Are programming languages the same across the East and West? If not, what are
the differences between these languages?

2. What about languages used to teach programming in the early grades, East versus
West?

3. Given that Chinese characters number in the tens of thousands (80,000 characters,
be conventional wisdom, are needed to achieve ≈ 98% coverage of Chinese linguistic
communication), whereas English, in a parallel with the austerity of characters seen
in mainsteam programming languages, uses very few (there are, after all, only 26
letters in the English alphabet), what are the consequences of this great and vast
difference for the learning of programming by young minds in the East, versus the
West?35

4. Nisbett (2004) has argued, by appeal to empirical evidence, that reasoning differs
between East and West.36 What are the consequences of this view for the cognitive
science of computer programming?

It will be exciting to tackle these questions in the future, and the present work provides a
foundation for doing so.

6.4 Final Remarks
In conclusion, then, given the work accomplished so far, it is perhaps safe to say that

the future now appears bright, but there is a lot of work to be done to further advance the
cognitive science of computer programming, and to harness that science so as to better
educate programmers.

35This question is presumably greatly colored by the fact that there is no programming language, at
least not one known to us or in the literature, that is a “natively Chinese” one.

36E.g., he specifically claims that cognizers in the East are much more willing to tolerate contradictions
than those in Occidental culture. Given that at least mainstream programming langauges (as well as the
sub-field of computer science known as ‘programming languages’ (or just ‘PL’ for short) are based on the
outright unacceptability of contradictions, Nisbett’s claim is certainly very interesting.
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APPENDIX A
Experiment 1 Programming Problems

Description
Two programming problems are given below, and involve working with a very simple

language, L, a fragment of English. The words used in L are:

{Bill, Jane, likes, chases,makes, a, the,man,woman, cat, happy, thin, quickly}
Bill, Jane, man, woman, and cat, are nouns; happy and thin are adjectives; likes, chases, andmakes are verbs; a and the are determiners; and quickly is an adverb.

The following grammar defines the sentences of L.

S ::= Noun Verb Noun R1

| Det Noun Verb Noun R2

| Det Adj∗ Noun Verb Det Adj∗ Noun R3

| Det Adj∗ Noun Adv Verb Det Adj∗ Noun R4

| Det Adj∗ Noun Verb Det Adj* Noun Adv R5

where Noun stands for any noun, Verb stands for any verb, Det stands for any deter-
miner, Adv stands for any adverb, Adj stands for any adjective, Adj∗ stands for zero,
one, or more adjectives, and S stands for a well-formed sentence of L.

For instance, the sequence 〈the, thin, cat,makes, a,Bill〉 is a sentence of L, becausecat and Bill are nouns, likes is a verb, the and a are determiners, and thin is an adjective;
so the sequence has the form Det Adv∗ Noun Verb Det Adj∗ Noun, which, by rule
R3, is a sentence of L. (Notice that the first Adj∗ is matched with the one adjective thin,
while the second Adj∗ is matched with the lack of adjectives between a and Bill.)

In each of the two problems you will be asked to write a program. You may use
one of the following programming languages: BASIC; C; C++; Java; Lisp; Pascal; or you
may use pseudo-code to describe your program in detail. Please indicate whether you
are using pseudo-code or a programming language to solve the problem, and, if using a
programming language, which programming language you are using.
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Problem 1
Write a program P that takes as input a (finite) sequence of words used in L and

outputs yes if the sequence is a sentence of L, and outputs no otherwise. For example, given
the sequence 〈Bill, likes, Jane〉, P should output yes because the sequence is a sentence,
according to R1. When given 〈Bill, Jane, likes〉, P should output no, because this sequence
is not a sentence of L.

Problem 2
Write a program P that takes as input a (finite) sequence of words used in L and

outputs yes if the sequences is a palindrome sentence of L, and outputs no otherwise. A
palindrome sentence is a sentence which reads the same in both directions. For example,
given the sequence 〈Bill, likes,Bill〉, P should output yes, since the sequence is a palin-
drome sentence. When given 〈the, cat, likes, Jane〉, P should output no, since the sequence,
although a sentence, is not a palindrome sentence.
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APPENDIX B
Experiment 2 Programming Problems

Description
First some basic terms: A logic gate is a basic building block of logic circuits. Each

logic gate implement a Boolean function on one or more logic inputs and produces a single
logic output (True or False). There are three basic logic gates: NOT, OR and AND.

• An AND gate acts in the same way as the logical AND operator. Given two inputs
A and B, the output O is true when both A and B are true. Otherwise, the output
O is False.This can be shown diagrammatically as in Figure B.1.

A 
B O 

Figure B.1: AND Gate (O = A ∧ B ).

The AND gate corresponds to a formula in the propositional calculus:

O = A ∧ B

• An OR gate acts in the same way as the logical OR operator. The output O is true if
either or both of the inputs (A,B) are true. If both inputs are false, then the output
O is false.

A 
B 

O 

Figure B.2: OR Gate ( O = A ∨ B ).

• A Not gate is a logic inverter. Assume an input A, the output O is the reversed logic
state of input A.

A O 

Figure B.3: NOT Gate (O = ¬A ).
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These are shown in Figures B.2 and B.3, and can be represented by formulae in
the propositional calculus:

O = A ∨ B

O = ¬A

repectively.

• Now, a Programmable Logic Array (PLA) consists of a programmable array of AND
gates and a programmable array of OR gates, which can then be conditionally com-
plemented to produce an output. Figure B.4 shows an example of pre-fabricated
blocks of a PLA of three inputs and four outputs where all possible connections are
available before programming.

A 

 

B 

 

C 

AND Array   

OR Array   

O1 

 

  

 

O2 

 

 

 

O3 

 

 

  

Figure B.4: An Example of Programmable Logic Array (PLA)

O1 = o1(A, B, C )
O2 = o2(A, B, C )
O3 = o3(A, B, C )
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Programming Problems
1. Given a logic circuits as shown in Figure B.7 with three inputs (A, B, C ). Please

write a program to determine the output of the logic function of the O.

�

Figure B.7: Experiment 2. Programming Problem 1: A
logic circuit with inputs (A, B, C) and output
O.

2. For this problem, you are given a set of binary inputs: (A1, A2, ..., An), please write
a computer program that computes a function O (A1, A2, ..., An), where Ai = 0 ,1
(i.e. false, true; see Figure B.8). You may use Programmable Logic Array (PLA)
methods, with minimal number of AND gates.

Output O (A1,A2,…,An) Inputs(A1,A2,…,An) Programmable 
Logic Array (PLA) 

Figure B.8: Experiment 2. Programming Problem 2: A
logic circuit with inputs (A, B, C) and a output
O.

3. Given a set of functions below.

O1 = A ∨ ¬B ∧ C

O2 = A ∧ ¬C ∨ A ∧ B

O3 = ¬B ∧ ¬C ∨ A ∧ B
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O4 = ¬B ∧ ¬C ∨ A

where (A, B, C) are inputs, (O1, O2, O3, O4) are outputs. Wrote a program to generate
a logic that compute all above functions, using minimal number of AND gates. The
output as represented as in Matrix with AND (product terms, input and outputs
(see sample figure B.6).
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APPENDIX C
Experiment 3 Programming Problems

Description 37

The residents of the underground city of Thontville defend themselves through a
combination of training, heavy artillery, and efficient algorithms. Recently, they become
interested in automated methods that can help fend off attaches by swarms of robots.
Here is what one of those robot attacks looks like.

• A swarm of robots arrives over the course of n seconds: in the ith second, xi robots
arrives. Based on remote sensing data, you know this sequences x1, x2, ..., xn advance.

• You have at your disposal an electromagneticpulses(EMP), which can destroy some
of the robots as they arrive; the EMP’s power depends on how long it’s been allowed
to charge up. To make this precise, there is a function f (.) so that if j seconds have
passed since the EMP was last used, then it is capable of destroying up to f (j) robots.

• So specifically, if it is used in the kth second, and it has been j seconds since it was
previously used, then it will destroy min(xk , f (j)) robots. (After this use, it will be
completely drained.)

• We will also assume that the EMP starts off completely drained, so if it is used for
the first time in the j th second, then it is capable of destroying up to f (j) robots.

The problem: Given the data on robot arrivals x1, x2, ..., xn, and given the recharging
function f (.), choose the points in time at which you are going to activate the EMP so as
to destroy as many robots as possible.

Example: Suppose n = 4, and the values of xi, and f (i) are given by the following
table:

i l 2 3 4

xi 1 10 10 1

f (i) 1 2 4 8

37The description and both of the problems were selected from Kleinberg & Tardos (2005, Question 8,
Chapter 6, pp. 318–319).
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The best solution would be to activate the EMP in the 3rd and the 4th seconds. In the3rd second, the EMP has gotten to charge for 3 seconds, and so it destroys min(10, 4) = 4
robots; in the 4th second, the EMP has only gotten to charge for 1 second since its last
use, and it destroys min(1, 1) = 1 robots. This is a total of 5.

Problem 1
Show that the following algorithm does not correctly solve this problem, by giving

an instance on which it does not return the correct answer.
Schedule-EMP (x1, x2, ..., xn)

Let j be the smallest number for which f (j) => xn

(If no such j exists then set j = n )
Activate the EMP in the nth second
If nâĂŞj => 1 then

Continue recursively on the input x1, x2, ..., xn−j

(i.e., invoke Schedule-EMP(x1, x2, ..., xn−j ) )

In your example, say what the correct answer is and also what the above algorithm
finds.

Problem 2
Given an algorithm that takes the data on Robot arrives x1, x2, ..., xn and the recharg-

ing function f (.), and returns the maximum number of robots that can be destroyed by a
sequences of EMP activations.

The running time of your algorithm should be polynomial in n. You should prove
that your algorithm works correctly, and include a brief analysis of the running time.
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APPENDIX D
List of Background Questions And Options

D.1 Background Information
• Identify your class year:

– Undergraduate 1st Year

– Undergraduate 2nd Year

– Undergraduate 3rd Year

– Undergraduate 4th Year

– Graduate (Master Level)

– Graduate (Doctoral Level)

– Other

• Enrollment Status

– Full Time

– Part Time

• Gender

– Male

– Female

• Age

• Is English your native language?

– Yes

– No

• Do you identify yourself as having Hispanic origin?

– Yes

– No

• Please indicate your race (Check all that apply)
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– White

– Black/African American

– Asian

– Native Hawaiian/Pacific Islander

– American Indian/Native Alaskan

– Other

D.2 Academic Information
• Academic Major

– Current major:

– Second major (If applicable):

– Minor (If applicable):

• GPA

– Undergraduate GPA:

– If a graduate student, enter Graduate GPA:

• Please enter the following test scores (if multiple, enter the highest score).

– SAT Math

– SAT Verbal

– ACT Math

– ACT Reading

– ACT English

– ACT Writing

– ACT Science

– ACT Composite

– GRE Verbal

– GRE Quantitative

– GRE Writing
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D.3 Education
D.3.1 Logic Education

• Check here if you have ever taken a logic class. If so, please answer questions below:
Total number of logic courses taken:

• Please enter the information regarding your four most-recent logic classes:

– Logic Course 1

∗ Name:

∗ Calendar Year (e.g. 2006):

∗ Class Year (e.g., K-8, undergraduate 1st Year):

∗ School Name:

∗ Credit Hours:

∗ Grade:

– Logic Course 2

∗ Name:

∗ Calendar Year:

∗ Class Year:

∗ School Name:

∗ Credit Hours:

∗ Grade:

– Logic Course 3

∗ Name:

∗ Calendar Year:

∗ Class Year:

∗ School Name:

∗ Credit Hours:

∗ Grade:

– Logic Course 4

∗ Name:

∗ Calendar Year:
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∗ Class Year:

∗ School Name:

∗ Credit Hours:

∗ Grade:

D.3.2 Computer Programming Language (PL) Education

• Check here if you have ever taken a computer programming language class.

• If so, please answer questions below:

– Total number of a PL courses taken:

– Please enter the information regarding your four most-recent PL classes:

∗ PL Course 1

· Name:

· Calendar Year (e.g. 2006):

· Class Year (e.g., K-8, undergraduate 1st Year):

· School Name:

· Credit Hours:

· Grade:

∗ PL Course 2

· Name:

· Calendar Year:

· Class Year:

· School Name:

· Credit Hours:

· Grade:

∗ PL Course 3

· Name:

· Calendar Year:

· Class Year:

· School Name:

· Credit Hours:
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· Grade:

∗ PL Course 4

· Name:

· Calendar Year:

· Class Year:

· School Name:

· Credit Hours:

· Grade:

D.3.3 Programming Language Knowledge

• How many programming languages do you know?

• Number of Languages:

• Please indicate programming language(s) that you have taken a course on or used a
project (check all that apply):

– ALGOL

– ADA

– APL

– Assembler

– BASIC

– C

– C++

– COBOL

– Fortran

– HTML

– Hypertalk

– Java

– JCL

– LISP

– Logo
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– ML

– PASCAL

– Perl

– PHP

– PL/1

– Prolog

– Python

– Ruby

– S

– Schema

– Smalltalk

– XML

– Other (If there are others, please list their names):

• My favorite programming language(s) (check all that apply):

– ALGOL

– ADA

– APL

– Assembler

– BASIC

– C

– C++

– COBOL

– Fortran

– HTML

– Hypertalk

– Java

– JCL

– LISP
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– Logo

– ML

– PASCAL

– Perl

– PHP

– PL/1

– Prolog

– Python

– Ruby

– S

– Schema

– Smalltalk

– XML

– Other (If there are others, please list their names):

D.3.4 First Programming Language

Indicate the first programming language that you ever learned:

• Name of the language:

• Calendar Year of Initially Learned (e.g. 2006)

• Class Year: (e.g., K-8, undergraduate 1st Year etc.)

• Primary Reason for learning (check one):

– Course Requirement

– School âĂĲEnrichmentâĂİ/AP

– School Club Activity

– Research Project

– Job Projects

– Play/Design Games

– Curiosity
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– Solve a game problem

– Other; Please specify:

• Primary learning method (check one):

– Books

– Classroom training courses

– Online documents

– Online tutoring

– Software tutoring

– On on job training

– Hands-on Self-Study

– Other; Please specify:

• Other methods used (check all that apply):

– Books

– Classroom training courses

– Online documents

– Online tutoring

– Software tutoring

– On on job training

– Hands-on Self-Study

– Other; Please specify:

• Which learning method do you believe was best for learning your initial programming
language?

– Books

– Classroom training courses

– Online documents

– Online tutoring
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– Software tutoring

– On on job training

– Hands-on Self-Study

– Other; Please specify:

• Do you expect to use this language in a future project ?

– Yes

– No

• My favorite subject in school (check all that apply).

– Art

– Language

– Math

– Science

– Engineering

– Music

– Other; Please specify:

Next please solve the attached programming problems.
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APPENDIX E
Post Problem Solving Feedback Questions

Please indicate your response to the following statements.

• Problem I was easy.

– 1 Strongly agree

– 2 Agree

– 3 Somewhat agree

– 4 Disagree

– 5 Strongly disagree

• Problem 2 was easy.

– 1 Strongly agree

– 2 Agree

– 3 Somewhat agree

– 4 Disagree

– 5 Strongly disagree

• A random check to make sure you are still paying attention.
Please select option 3.

– 1 Strongly agree

– 2 Agree

– 3 Somewhat agree

– 4 Disagree

– 5 Strongly disagree

• I had trouble solving the problems.

– 1 Strongly agree

– 2 Agree

– 3 Somewhat agree

95
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– 4 Disagree

– 5 Strongly disagree

• The problems were easy overall.

– 1 Strongly agree

– 2 Agree

– 3 Somewhat agree

– 4 Disagree

– 5 Strongly disagree

• We appreciate any other comments/feedbacks about your experiences of solving the
above two programming problems.
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Entry as 
Logic

Entry 
as PL

Course Name Raw Course Name Standard

0 1  Beginning C for Engineers Beginners C Programming for Engineers

0 1 AP Computer Science AP Computer Science

0 1 AP Computer Science A AP Computer Science

0 1 AP Computer Science AB AP Computer Science

0 1 AP CS AP Computer Science

0 1 AP Java AP Computer Science

0 1 Beg. C Programming Eng Beginners C Programming for Engineers

0 1 BegGinning C Beginner Computer Programming

0 1 Beginner C Programming Beginning C Programming

0 1 Beginner Computer Programming Beginner Computer Programming

0 1 Beginners C Programming for Engineers Beginners C Programming for Engineers

0 1 Beginning C Beginning C Programming

0 1 Beginning C for Engineers Beginners C Programming for Engineers

0 1 Beginning C prog for engineers Beginners C Programming for Engineers

0 1 Beginning C Programming Beginning C Programming

0 1 beginning c programming for engineers Beginners C Programming for Engineers

0 1 Beginning C++ Programming for Engineers Beginning C++ Programming for Engineers

0 1 C prog for eng Beginners C Programming for Engineers

0 1 C Programming Beginning C Programming

0 1 C programming 1 C Programming 1

0 1 C programming 2 C Programming 2

0 1 C Programming for Engineers Beginners C Programming for Engineers

0 1 C++ C++

0 1 Comm Design for the WWW Comm Design for the WWW

0 1 Comp Sci I Comptuer Science 1

0 1 Comptuer Science Comptuer Science 1

0 1 Comptuer Science 1 Comptuer Science 1

0 1 computer graph Computer Graphics

0 1 Computer Graphics Computer Graphics

0 1 computer org Computer Organization

0 1 Computer Oranzation Computer Organization

0 1 computer org Computer Organization
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Entry as 
Logic

Entry 
as PL

Course Name Raw Course Name Standard

0 1 Computer orga Computer Organization

0 1 computer organization Computer Organization

0 1 Computer Programming Computer Programming

0 1 Computer Programming I Computer Programming 1

0 1 Computer Programming II Computer Programming 2

0 1 Computer Programming Java Programming in Java

0 1 Computer Science Comptuer Science

0 1 Computer science 1 Comptuer Science 1

0 1 Computer science 1-ap AP Computer Science

0 1 Computer Science 2 Comptuer Science 2

0 1 Computer Science I Comptuer Science 1

0 1 Computer Science II Comptuer Science 2

0 1 Computer Science III Comptuer Science 3

0 1 CP Computer Programming

0 1 CS Comptuer Science

0 1 cs - 1 Comptuer Science 1

0 1 CS - AP AP Computer Science

0 1 Cs 1 Comptuer Science 1

0 1 cs -1 Comptuer Science 1

0 1 CS 2 Comptuer Science 2

0 1 cs -ap AP Computer Science

0 1 CS I Comptuer Science 1

0 1 CS II Comptuer Science 2

0 1 AP- Computer Science AP Computer Science

0 1 cs using java Computer Science using Java

0 1 cs1 Comptuer Science 1

0 1 CS-1 Comptuer Science 1

0 1 CS1: Java Comptuer Science 1

0 1 cs2 Data Structures and Algorithms

0 1 CS-AP AP Computer Science

0 1 CSCI 1 Comptuer Science 1

0 1 CSCI 1100 Comptuer Science 1
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Entry as 
Logic

Entry 
as PL

Course Name Raw Course Name Standard

0 1 CSCI 2 Data Structures and Algorithms

0 1 Csci 2400 Models of Computation

0 1 CSCI-1200 Data Structures

0 1 CSCI-2300 Introduction to Algorithms

0 1 CSCI-2400 Models of Computation

0 1 CSCI-2500 Computer Organization

0 1 csII Comptuer Science 2

0 1 dara structure Data Structures

0 1 data structure Data Structures

0 1 data structure (c++) Data Structures (C++)

0 1 Data Structures Data Structures and Algorithms

0 1 Data Structures & Algorithms Data Structures and Algorithms

0 1 Data Structures and Algorithms Data Structures and Algorithms

0 1 data struture Data Structures

0 1 DB systems DB systems

0 1 DSA Data Structures and Algorithms

0 1 Embedded Control Embedded Controls

0 1 Emdeded Control Embedded Controls

0 1 Engineering Tools Engineering Tools

0 1 fortran Fortran

0 1 high level Lang 1: C high level Lang 1: C

0 1 high level Lang 1: C high level Lang 1: C

0 1 into alg Introduction to Algorithms

0 1 intro Algorithm Introduction to Algorithms

0 1 intro Algrithm Introduction to Algorithms

0 1 intro computer Programming Introduction to Computer Programming

0 1 intro computer sc Computer Science 1

0 1 intro cs Computer Science 1

0 1 intro ro Pro(JAVA) Programming in Java

0 1 intro to algorithm Introduction to Algorithms

0 1 Intro to Algorithms Introduction to Algorithms

0 1 intro to algorthm Introduction to Algorithms
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Entry as 
Logic

Entry 
as PL

Course Name Raw Course Name Standard

0 1 intro to alorithms Introduction to Algorithms

0 1 Intro to C Introduction to C Programming

0 1 Intro to C Programming Introduction to C Programming

0 1 Intro to C++ Introduction to C Programming

0 1 Intro to Computer Programming Introduction to Computer Programming

0 1 Intro to Computer Science Comptuer Science 1

0 1 intro to cs Comptuer Science 1

0 1 intro to cs 2 Comptuer Science 2

0 1 intro to db Introduction to DB

0 1 intro to game design Introduction to Game Design

0 1 intro to java Programming in Java

0 1 intro to organization Computer Organization

0 1 intro to P Introduction to Computer Programming

0 1 intro to Phython Programming in Python

0 1 intro to programm (C++) Introduction to Programming (C++)

0 1 Intro to Programming Introduction to C Programming

0 1 intro to programming design Introduction to Computer Programming

0 1 intro to VB Introduction to Visual Basic

0 1 Intro to Visual Basic Introduction to Visual Basic

0 1 Intro. Computer Programming Introduction to Computer Programming

0 1 Introduction to Algorithm Introduction to Algorithms

0 1 Introduction to C++ Beginning C++ Programming

0 1 Introduction to Computer Science Computer Science 1

0 1 Introduction to Java Programming in Java

0 1 Java Programming in Java

0 1 Java I Programming in Java

0 1 Java II Programming in Java 2

0 1 java programming Programming in Java

0 1 LITEC Embedded Control

0 1 Models of Computation Models of Computation

0 1 Matlab Programming for engineers Matlab Programming for engineers

0 1 Microsoft Apps Microsoft Apps
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Entry as 
Logic

Entry 
as PL

Course Name Raw Course Name Standard

0 1 model of computation Models of Computation

0 1 Numerical computing Numerical Computing

0 1 numerucal computing Numerical Computing

0 1 OOP Object Oriented Programming

0 1 Operating Sys Operating Systems

0 1 Operating Systems Operating Systems

0 1 Operatng system Operating Systems

0 1 OS Operating Systems

0 1 Perl Programming in Perl

0 1 pl Proggramming Languages

0 1 PL in java Programming in Java

0 1 Pls Proggramming Languages

0 1 Proframming Languages Proggramming Languages

0 1 prog in Python Programming in Python

0 1 Proggramming Languages Proggramming Languages

0 1 program in Python Programming in Python

0 1 Programing In Java Programming in Java

0 1 Programming and logic 1 Programming and logic 1

0 1 Programming and logic 2 Programming and logic 2

0 1 Programming in Java Programming in Java

0 1 programming in python Programming in Python

0 1 psthon Programming in Python

0 1 System Level Programming System Level Programming

0 1 Visual Basic Introduction to Visual Basic

0 1 Web and Database Programming Web and Database Programming

0 1 Web Design Web Systems Design

0 1 Web Sys Web Systems Design

0 1 web system Web Systems Design

0 1 web system design Web Systems Design

0 1 Web Systems Web Systems Design

0 1 Web Systems Development Web Systems Design

1 0 calclus 1 calclus 1
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Entry as 
Logic

Entry 
as PL

Course Name Raw Course Name Standard

1 0 Calculus II Calculus II

1 0 Chemistry Chemistry

1 0 COCO Computer Components and Operations

1 0 compitability and logic Computability and Logic

1 0 Computer Components and Operations Computer Components and Operations

1 0 computer componets and org Computer Components and Operations

1 0 Computer Org Computer Components and Operations

1 0 descreate math Introduction to Discrete Structures

1 0 digital electonics Digital electonics

1 0 discreate math Introduction to Discrete Structures

1 0 discreate Structure ntroduction to Discrete Structures

1 0 Discrete Mathematics ntroduction to Discrete Structures

1 0 discrete structure Introduction to Discrete Structures

1 0 discrete structures Introduction to Discrete Structures

1 0 Embedded Control Embedded Controls

1 0 Embedded Controls Embedded Controls

1 0 Faith and Reason Faith and Reason

1 0 General Psychology General Psychology

1 0 General Pyschology General Psychology

1 0 IEA Introduction to Engineering Analysis

1 0 intermed logic Intermediate Logic

1 0 intro philosophy and anarchy introduction to philosophy and anarchy

1 0 Intro to Civil/Environmental Engineering Intro to Civil/Environmental Engineering

1 0 Intro to Discrete Structures Introduction to Discrete Structures

1 0 intro to discrye structure Introduction to Discrete Structures

1 0 intro to logic Introduction to Logic

1 0 Intro To Management Intro To Management

1 0 Intro to Philosophy Intro to Philosophy

1 0 Introduction to Discrete Structures Introduction to Discrete Structures

1 0 Introduction to Logic Introduction to Logic

1 0 Introduction to Programming in C Introduction to Programming in C

1 0 Logic 101 Logic 101
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Entry as 
Logic

Entry 
as PL

Course Name Raw Course Name Standard

1 0 Math for Management Math for Management

1 0 Micro Computers and Applications Micro Computers and Applications

1 0 mind and machine Minds and Machines

1 0 Minds + macn Minds and Machines

1 0 minds and machine Minds and Machines

1 0 Minds and Machines Minds and Machines

1 0 model of computation Models of Computation

1 0 models of computation Models of Computation

1 0 PHIL-1100 Introduction to Philosophy

1 0 Probability Theory & Applications Probability Theory & Applications

1 0 programing on Logic Programing on Logic

1 0 Programming and logic 1 Programming and logic 1

1 0 Programming and logic 2 Programming and logic 2

1 0 Psychology Psychology

1 0 Statistics and State. Programming Statistics and State. Programming

1 0 symbolic logic Symbolic logic
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